extract explicit mesh with topology information from implicit surfaces with boolean operations, and do surface/volume integrating on them.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

389 lines
12 KiB

#pragma once
#include <array>
#include <cstddef>
#include <limits>
#include <type_traits>
inline constexpr std::size_t dynamic_extent = std::numeric_limits<std::size_t>::max();
template <typename ElementType, std::size_t Extent = dynamic_extent>
class span;
namespace detail
{
template <typename E, std::size_t S>
struct span_storage {
constexpr span_storage() noexcept = default;
constexpr span_storage(E* p_ptr, std::size_t /*unused*/) noexcept : ptr(p_ptr) {}
E* ptr = nullptr;
static constexpr std::size_t size = S;
};
template <typename E>
struct span_storage<E, dynamic_extent> {
constexpr span_storage() noexcept = default;
constexpr span_storage(E* p_ptr, std::size_t p_size) noexcept : ptr(p_ptr), size(p_size) {}
E* ptr = nullptr;
std::size_t size = 0;
};
using std::void_t;
template <typename T>
using uncvref_t = typename std::remove_cv_t<std::remove_reference_t<T>>;
template <typename>
struct is_span : std::false_type {
};
template <typename T, std::size_t S>
struct is_span<span<T, S>> : std::true_type {
};
template <typename T>
static constexpr auto is_span_v = is_span<T>::value;
template <typename>
struct is_std_array : std::false_type {
};
template <typename T, std::size_t N>
struct is_std_array<std::array<T, N>> : std::true_type {
};
template <typename T>
static constexpr auto is_std_array_v = is_std_array<T>::value;
template <typename, typename = void>
struct has_size_and_data : std::false_type {
};
template <typename T>
struct has_size_and_data<T, void_t<decltype(std::size(std::declval<T>())), decltype(std::data(std::declval<T>()))>>
: std::true_type {
};
template <typename T>
static constexpr auto has_size_and_data_v = has_size_and_data<T>::value;
template <typename C, typename U = uncvref_t<C>>
struct is_container {
static constexpr bool value = !is_span_v<U> && !is_std_array_v<U> && !std::is_array_v<U> && has_size_and_data_v<C>;
};
template <typename C>
static constexpr auto is_container_v = is_container<C>::value;
template <typename T>
using remove_pointer_t = std::remove_pointer_t<T>;
template <typename, typename, typename = void>
struct is_container_element_type_compatible : std::false_type {
};
template <typename T, typename E>
struct is_container_element_type_compatible<
T,
E,
typename std::enable_if<
!std::is_same_v<std::remove_cv_t<decltype(std::data(std::declval<T>()))>, void>
&& std::is_convertible_v<remove_pointer_t<decltype(std::data(std::declval<T>()))> (*)[], E (*)[]>>::type>
: std::true_type {
};
template <typename T, typename E>
static constexpr auto is_container_element_type_compatible_v = is_container_element_type_compatible<T, E>::value;
template <typename, typename = size_t>
struct is_complete : std::false_type {
};
template <typename T>
struct is_complete<T, decltype(sizeof(T))> : std::true_type {
};
template <typename T>
static constexpr auto is_complete_v = is_complete<T>::value;
} // namespace detail
template <typename ElementType, std::size_t Extent>
class span
{
static_assert(std::is_object_v<ElementType>,
"A span's ElementType must be an object type (not a "
"reference type or void)");
static_assert(detail::is_complete_v<ElementType>,
"A span's ElementType must be a complete type (not a forward "
"declaration)");
static_assert(!std::is_abstract_v<ElementType>, "A span's ElementType cannot be an abstract class type");
using storage_type = detail::span_storage<ElementType, Extent>;
public:
// constants and types
using element_type = ElementType;
using value_type = std::remove_cv_t<ElementType>;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using pointer = element_type*;
using const_pointer = const element_type*;
using reference = element_type&;
using const_reference = const element_type&;
using iterator = pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
static constexpr size_type extent = Extent;
// [span.cons], span constructors, copy, assignment, and destructor
template <std::size_t E = Extent, typename std::enable_if_t<(E == dynamic_extent || E <= 0), int> = 0>
constexpr span() noexcept
{
}
constexpr span(pointer ptr, size_type count) : storage_(ptr, count) { assert(extent == dynamic_extent || count == extent); }
constexpr span(pointer first_elem, pointer last_elem) : storage_(first_elem, last_elem - first_elem)
{
assert(extent == dynamic_extent || last_elem - first_elem == static_cast<std::ptrdiff_t>(extent));
}
template <std::size_t N,
std::size_t E = Extent,
typename = std::enable_if_t<(E == dynamic_extent || N == E)
&& detail::is_container_element_type_compatible_v<element_type (&)[N], ElementType>>>
constexpr span(element_type (&arr)[N]) noexcept : storage_(arr, N)
{
}
template <typename T,
std::size_t N,
std::size_t E = Extent,
typename = std::enable_if_t<(E == dynamic_extent || N == E)
&& detail::is_container_element_type_compatible_v<std::array<T, N>&, ElementType>>>
constexpr span(std::array<T, N>& arr) noexcept : storage_(arr.data(), N)
{
}
template <
typename T,
std::size_t N,
std::size_t E = Extent,
typename = std::enable_if_t<(E == dynamic_extent || N == E)
&& detail::is_container_element_type_compatible_v<const std::array<T, N>&, ElementType>>>
constexpr span(const std::array<T, N>& arr) noexcept : storage_(arr.data(), N)
{
}
template <typename Container,
std::size_t E = Extent,
typename = std::enable_if_t<E == dynamic_extent && detail::is_container_v<Container>
&& detail::is_container_element_type_compatible_v<Container&, ElementType>>>
constexpr span(Container& cont) : storage_(std::data(cont), std::size(cont))
{
}
template <typename Container,
std::size_t E = Extent,
typename = std::enable_if_t<E == dynamic_extent && detail::is_container_v<Container>
&& detail::is_container_element_type_compatible_v<const Container&, ElementType>>>
constexpr span(const Container& cont) : storage_(std::data(cont), std::size(cont))
{
}
constexpr span(const span& other) noexcept = default;
template <typename OtherElementType,
std::size_t OtherExtent,
typename = std::enable_if_t<(Extent == dynamic_extent || OtherExtent == dynamic_extent || Extent == OtherExtent)
&& std::is_convertible_v<OtherElementType (*)[], ElementType (*)[]>>>
constexpr span(const span<OtherElementType, OtherExtent>& other) noexcept : storage_(other.data(), other.size())
{
}
~span() noexcept = default;
constexpr span& operator=(const span& other) noexcept = default;
// [span.sub], span subviews
template <std::size_t Count>
constexpr span<element_type, Count> first() const
{
assert(Count <= size());
return {data(), Count};
}
template <std::size_t Count>
constexpr span<element_type, Count> last() const
{
assert(Count <= size());
return {data() + (size() - Count), Count};
}
template <std::size_t Offset, std::size_t Count = dynamic_extent>
using subspan_return_t =
span<ElementType, Count != dynamic_extent ? Count : (Extent != dynamic_extent ? Extent - Offset : dynamic_extent)>;
template <std::size_t Offset, std::size_t Count = dynamic_extent>
constexpr subspan_return_t<Offset, Count> subspan() const
{
assert(Offset <= size() && (Count == dynamic_extent || Offset + Count <= size()));
return {data() + Offset, Count != dynamic_extent ? Count : size() - Offset};
}
constexpr span<element_type, dynamic_extent> first(size_type count) const
{
assert(count <= size());
return {data(), count};
}
constexpr span<element_type, dynamic_extent> last(size_type count) const
{
assert(count <= size());
return {data() + (size() - count), count};
}
constexpr span<element_type, dynamic_extent> subspan(size_type offset, size_type count = dynamic_extent) const
{
assert(offset <= size() && (count == dynamic_extent || offset + count <= size()));
return {data() + offset, count == dynamic_extent ? size() - offset : count};
}
// [span.obs], span observers
constexpr size_type size() const noexcept { return storage_.size; }
constexpr size_type size_bytes() const noexcept { return size() * sizeof(element_type); }
[[nodiscard]] constexpr bool empty() const noexcept { return size() == 0; }
// [span.elem], span element access
constexpr reference operator[](size_type idx) const
{
assert(idx < size());
return *(data() + idx);
}
constexpr reference front() const
{
assert(!empty());
return *data();
}
constexpr reference back() const
{
assert(!empty());
return *(data() + (size() - 1));
}
constexpr pointer data() const noexcept { return storage_.ptr; }
// [span.iterators], span iterator support
constexpr iterator begin() const noexcept { return data(); }
constexpr iterator end() const noexcept { return data() + size(); }
constexpr reverse_iterator rbegin() const noexcept { return reverse_iterator(end()); }
constexpr reverse_iterator rend() const noexcept { return reverse_iterator(begin()); }
private:
storage_type storage_{};
};
/* Deduction Guides */
template <class T, size_t N>
span(T (&)[N]) -> span<T, N>;
template <class T, size_t N>
span(std::array<T, N>&) -> span<T, N>;
template <class T, size_t N>
span(const std::array<T, N>&) -> span<const T, N>;
template <class Container>
span(Container&) -> span<std::remove_reference_t<decltype(*std::data(std::declval<Container&>()))>>;
template <class Container>
span(const Container&) -> span<const typename Container::value_type>;
template <typename ElementType, std::size_t Extent>
constexpr span<ElementType, Extent> make_span(span<ElementType, Extent> s) noexcept
{
return s;
}
template <typename T, std::size_t N>
constexpr span<T, N> make_span(T (&arr)[N]) noexcept
{
return {arr};
}
template <typename T, std::size_t N>
constexpr span<T, N> make_span(std::array<T, N>& arr) noexcept
{
return {arr};
}
template <typename T, std::size_t N>
constexpr span<const T, N> make_span(const std::array<T, N>& arr) noexcept
{
return {arr};
}
template <typename Container>
constexpr span<std::remove_reference_t<decltype(*std::data(std::declval<Container&>()))>> make_span(Container& cont)
{
return {cont};
}
template <typename Container>
constexpr span<const typename Container::value_type> make_span(const Container& cont)
{
return {cont};
}
template <typename ElementType, std::size_t Extent>
span<const std::byte, ((Extent == dynamic_extent) ? dynamic_extent : sizeof(ElementType) * Extent)> as_bytes(
span<ElementType, Extent> s) noexcept
{
return {reinterpret_cast<const std::byte*>(s.data()), s.size_bytes()};
}
template <class ElementType, size_t Extent, typename = std::enable_if_t<!std::is_const_v<ElementType>>>
span<std::byte, ((Extent == dynamic_extent) ? dynamic_extent : sizeof(ElementType) * Extent)> as_writable_bytes(
span<ElementType, Extent> s) noexcept
{
return {reinterpret_cast<std::byte*>(s.data()), s.size_bytes()};
}
template <std::size_t N, typename E, std::size_t S>
constexpr auto get(span<E, S> s) -> decltype(s[N])
{
return s[N];
}
namespace std
{
template <typename ElementType, size_t Extent>
class tuple_size<::span<ElementType, Extent>> : public integral_constant<size_t, Extent>
{
};
template <typename ElementType>
class tuple_size<::span<ElementType, ::dynamic_extent>>; // not defined
template <size_t I, typename ElementType, size_t Extent>
class tuple_element<I, ::span<ElementType, Extent>>
{
public:
static_assert(Extent != ::dynamic_extent && I < Extent, "");
using type = ElementType;
};
} // end namespace std