#include #include "internal_api.hpp" #include "globals.hpp" #include "aabb.hpp" #include "node_operation.hpp" /* internal global variables for blobtree */ std::vector> structures{}; std::vector> aabbs{}; std::vector> primitives{}; std::stack>> free_structure_list{}; /* ============================================================================================= * basic functionalities * ============================================================================================= */ BPE_API std::vector>& get_primitives() noexcept { return primitives; } void shrink_primitives() { primitives.shrink_to_fit(); } virtual_node_t copy(virtual_node_t old_node, virtual_node_t new_node) { assert(old_node.main_index != new_node.main_index); // Copy a tree and its subtrees to a temporary tree auto temp = structures[old_node.main_index]; // Update all index const auto size = static_cast(structures[new_node.main_index].nodes.size()); for (uint32_t i = 0; i < temp.nodes.size(); i++) { if (!node_is_parent_null(temp.nodes[i])) node_fetch_parent_index(temp.nodes[i]) += size; if (!node_is_left_child_null(temp.nodes[i])) node_fetch_left_child_index(temp.nodes[i]) += size; if (!node_is_right_child_null(temp.nodes[i])) node_fetch_right_child_index(temp.nodes[i]) += size; } for (uint32_t i = 0; i < temp.leaf_index.size(); i++) { temp.leaf_index[i] += size; } // Copy the updated index tree to the array at the new location structures[new_node.main_index].nodes.insert(structures[new_node.main_index].nodes.end(), temp.nodes.begin(), temp.nodes.end()); structures[new_node.main_index].leaf_index.insert(structures[new_node.main_index].leaf_index.end(), temp.leaf_index.begin(), temp.leaf_index.end()); return virtual_node_t{new_node.main_index, old_node.inner_index + size}; } void offset_primitive(primitive_node_t& node, const Eigen::Vector3d& offset) { auto offset_point = [](raw_vector3d_t& point, const Eigen::Vector3d& offset) { Eigen::Map point_map(&point.x); point_map += offset; }; auto type = node.type; switch (type) { case PRIMITIVE_TYPE_CONSTANT: { break; } case PRIMITIVE_TYPE_PLANE: { auto desc = static_cast(node.desc); offset_point(desc->point, offset); break; } case PRIMITIVE_TYPE_SPHERE: { auto desc = static_cast(node.desc); offset_point(desc->center, offset); break; } case PRIMITIVE_TYPE_CYLINDER: { auto desc = static_cast(node.desc); offset_point(desc->bottom_origion, offset); break; } case PRIMITIVE_TYPE_CONE: { auto desc = static_cast(node.desc); offset_point(desc->top_point, offset); offset_point(desc->bottom_point, offset); break; } case PRIMITIVE_TYPE_BOX: { auto desc = static_cast(node.desc); offset_point(desc->center, offset); break; } case PRIMITIVE_TYPE_MESH: { auto desc = static_cast(node.desc); for (int i = 0; i < desc->point_number; i++) { offset_point(desc->points[i], offset); } break; } case PRIMITIVE_TYPE_EXTRUDE: { auto desc = static_cast(node.desc); for (int i = 0; i < desc->edges_number; i++) { offset_point(desc->points[i], offset); } break; } default: { break; } } } BPE_API void free_sub_blobtree(uint32_t index) noexcept { // 这里尽量打标记,延迟修改和删除 free_structure_list.push(index); } bool upward_propagation(blobtree_t& tree, const int leaf_node_index, const int root_index) { int now_index = leaf_node_index; now_index = node_fetch_parent_index(tree.nodes[now_index]); while (true) { auto& node = tree.nodes[now_index]; auto& left_child = tree.nodes[node_fetch_left_child_index(node)]; auto& right_child = tree.nodes[node_fetch_right_child_index(node)]; auto node_in_out_flag = node_fetch_in_out(node); eNodeLocation left_child_in_out_flag = node_fetch_in_out(left_child); eNodeLocation right_child_in_out_flag = node_fetch_in_out(right_child); if (node_in_out_flag != eNodeLocation::unset) { return false; } switch (node_fetch_operation(node)) { case eNodeOperation::unionOp: { if (left_child_in_out_flag == eNodeLocation::in || right_child_in_out_flag == eNodeLocation::in) { node_in_out_flag = eNodeLocation::in; } else if (left_child_in_out_flag == eNodeLocation::out && right_child_in_out_flag == eNodeLocation::out) { node_in_out_flag = eNodeLocation::out; } else { return false; } break; } case eNodeOperation::intersectionOp: { if (left_child_in_out_flag == eNodeLocation::in && right_child_in_out_flag == eNodeLocation::in) { node_in_out_flag = eNodeLocation::in; } else if (left_child_in_out_flag == eNodeLocation::out || right_child_in_out_flag == eNodeLocation::out) { node_in_out_flag = eNodeLocation::out; } else { return false; } break; } case eNodeOperation::differenceOp: { if (left_child_in_out_flag == eNodeLocation::in && right_child_in_out_flag == eNodeLocation::out) { node_in_out_flag = eNodeLocation::in; } if (left_child_in_out_flag == eNodeLocation::out || right_child_in_out_flag == eNodeLocation::in) { node_in_out_flag = eNodeLocation::out; } else { return false; } break; } default: { return false; break; } } if (now_index == root_index) { return true; } now_index = node_fetch_parent_index(node); } } eNodeLocation evaluate(const virtual_node_t& node, const raw_vector3d_t& point) { auto temp = structures[node.main_index]; auto& leaf_index = temp.leaf_index; for (size_t i = 0; i < leaf_index.size(); i++) { auto sdf = evaluate(primitives[leaf_index[i]], point); auto leaf_node_in_out = node_fetch_in_out(temp.nodes[leaf_index[i]]); if (sdf <= 0.0) leaf_node_in_out = eNodeLocation::in; else leaf_node_in_out = eNodeLocation::out; if (upward_propagation(temp, leaf_index[i], node.inner_index)) { break; } } return node_fetch_in_out(temp.nodes[node.inner_index]); } aabb_t get_aabb(const virtual_node_t& node) { auto& leaf_index = structures[node.main_index].leaf_index; aabb_t result{}; for (auto& index : leaf_index) { auto& type = primitives[index].type; if (type != PRIMITIVE_TYPE_CONSTANT && type != PRIMITIVE_TYPE_PLANE) { result.extend(aabbs[index]); } } return result; } // uint32_t get_closest_common_parent(const std::vector& mask, const int main_index) // { // // Copy tree structure // auto tree = structures[main_index]; // // Count how many geometries are queried // int count = 0; // for (int i = 0; i < mask.size(); i++) { // if (mask[i] == 1) { count++; } // } // uint32_t result = 0xFFFFFFFFu; // for (uint32_t i = 0; i < mask.size(); i++) { // if (mask[i] == 0) { continue; } // for (auto& iter : tree.leaf_index) { // // Find the location of the current query geometry in the tree // if (node_fetch_primitive_index(tree.nodes[iter]) != i) { continue; } // // Traverse from bottom to top and increase the count of all nodes by 1 // uint32_t now = iter; // while (true) { // now = node_fetch_parent_index(tree.nodes[now]); // // now is root // if (now == 0xFFFFFFFFu) { break; } // // Use the primitive index of the internal node to count // if (node_fetch_primitive_index(tree.nodes[now]) == 0xFFFFFFu) { // set_primitive_index(tree.nodes[now], 1); // } else { // set_primitive_index(tree.nodes[now], node_fetch_primitive_index(tree.nodes[now]) + 1); // } // if (node_fetch_primitive_index(tree.nodes[now]) == count) { // result = now; // break; // } // } // break; // } // } // return result; // } /* ============================================================================================= * tree node operations * ============================================================================================= */ BPE_API bool virtual_node_set_parent(virtual_node_t* node, virtual_node_t* parent) { auto& node_in_tree = structures[node->main_index].nodes[node->inner_index]; // The node's parent is not empty if (!node_is_parent_null(node_in_tree)) { return false; } auto& parent_in_tree = structures[parent->main_index].nodes[parent->inner_index]; auto parent_inner_index = parent->inner_index; // not on the same tree if (node->main_index != parent->main_index) { auto new_parent = copy(*parent, *node); parent_in_tree = structures[new_parent.main_index].nodes[new_parent.inner_index]; parent_inner_index = new_parent.inner_index; } auto parent_left_child = node_fetch_left_child_index(parent_in_tree); auto parent_right_child = node_fetch_right_child_index(parent_in_tree); // set parent index node_fetch_parent_index(node_in_tree) = parent_inner_index; // The parent's left child is empty if (node_is_left_child_null(node_in_tree)) { parent_left_child = node->inner_index; return true; } // The parent's right child is empty else if (node_is_right_child_null(node_in_tree)) { parent_right_child = node->inner_index; return true; } return false; } BPE_API bool virtual_node_set_left_child(virtual_node_t* node, virtual_node_t* child) { auto& node_in_tree = structures[node->main_index].nodes[node->inner_index]; // The child's parent is not empty if (!node_is_parent_null(node_in_tree)) { return false; } // The node's left child is not empty if (!node_is_left_child_null(node_in_tree)) { return false; } auto node_left_child = node_fetch_left_child_index(node_in_tree); auto node_right_child = node_fetch_right_child_index(node_in_tree); // On the same tree if (node->main_index == child->main_index) { auto& child_in_tree = structures[child->main_index].nodes[child->inner_index]; node_fetch_parent_index(child_in_tree) = node->inner_index; node_left_child = child->inner_index; } else { auto new_child = copy(*child, *node); auto& child_in_tree = structures[new_child.main_index].nodes[new_child.inner_index]; node_fetch_parent_index(child_in_tree) = node->inner_index; node_left_child = new_child.inner_index; } return true; } BPE_API bool virtual_node_set_right_child(virtual_node_t* node, virtual_node_t* child) { auto& node_in_tree = structures[node->main_index].nodes[node->inner_index]; // The child's parent is not empty if (!node_is_parent_null(node_in_tree)) { return false; } // The node's right child is not empty if (!node_is_right_child_null(node_in_tree)) { return false; } auto node_left_child = node_fetch_left_child_index(node_in_tree); auto node_right_child = node_fetch_right_child_index(node_in_tree); // On the same tree if (node->main_index == child->main_index) { auto& child_in_tree = structures[child->main_index].nodes[child->inner_index]; node_fetch_parent_index(child_in_tree) = node->inner_index; node_right_child = child->inner_index; } else { auto new_child = copy(*child, *node); auto& child_in_tree = structures[new_child.main_index].nodes[new_child.inner_index]; node_fetch_parent_index(child_in_tree) = node->inner_index; node_right_child = new_child.inner_index; } return true; } BPE_API bool virtual_node_add_child(virtual_node_t* node, virtual_node_t* child) { if (virtual_node_set_left_child(node, child)) { return true; } else if (virtual_node_set_right_child(node, child)) { return true; } return false; } BPE_API bool virtual_node_remove_child(virtual_node_t* node, virtual_node_t* child) { if (node->main_index != child->main_index) { return false; } auto& node_in_tree = structures[node->main_index].nodes[node->inner_index]; auto node_left_child = node_fetch_left_child_index(node_in_tree); auto node_right_child = node_fetch_right_child_index(node_in_tree); if (node_left_child == child->inner_index) { node_left_child = 0xFFFFFFFFu; blobtree_free_virtual_node(child); return true; } else if (node_right_child == child->inner_index) { node_right_child = 0xFFFFFFFFu; blobtree_free_virtual_node(child); return true; } return false; } /* ============================================================================================= * geometry operations * ============================================================================================= */ static constexpr node_t standard_new_node = {(uint64_t)0xFFFFFFFFFFFFFFFFu, (uint64_t)0xFFFFFFFFFFFFFFFFu}; static inline void virtual_node_boolean_op(virtual_node_t* node1, virtual_node_t* node2, eNodeOperation op) { auto new_node2 = copy(*node2, *node1); auto& inserted_node = structures[node1->main_index].nodes.emplace_back(standard_new_node); node_fetch_is_primitive(inserted_node) = false; // weird bug: need to force cast, or it will be treated as uint32_t instead of eNodeOperation node_fetch_operation(inserted_node) = (eNodeOperation)op; node_fetch_left_child_index(inserted_node) = node1->inner_index; node_fetch_right_child_index(inserted_node) = new_node2.inner_index; uint32_t parent_index = structures[node1->main_index].nodes.size() - 1; node_fetch_parent_index(structures[node1->main_index].nodes[node1->inner_index]) = parent_index; node_fetch_parent_index(structures[new_node2.main_index].nodes[new_node2.inner_index]) = parent_index; node1->inner_index = parent_index; } BPE_API void virtual_node_boolean_union(virtual_node_t* node1, virtual_node_t* node2) { virtual_node_boolean_op(node1, node2, eNodeOperation::unionOp); } BPE_API void virtual_node_boolean_intersect(virtual_node_t* node1, virtual_node_t* node2) { virtual_node_boolean_op(node1, node2, eNodeOperation::intersectionOp); } BPE_API void virtual_node_boolean_difference(virtual_node_t* node1, virtual_node_t* node2) { virtual_node_boolean_op(node1, node2, eNodeOperation::differenceOp); } BPE_API void virtual_node_offset(virtual_node_t* node, const raw_vector3d_t& direction, const double length) { raw_vector3d_t offset = {direction.x * length, direction.y * length, direction.z * length}; virtual_node_offset(node, offset); } BPE_API void virtual_node_offset(virtual_node_t* node, const raw_vector3d_t& offset) { Eigen::Map offset_(&offset.x); auto& all_leaf = structures[node->main_index].leaf_index; for (const auto& leaf_index : structures[node->main_index].leaf_index) { auto& primitive_node = structures[node->main_index].nodes[leaf_index]; const uint32_t primitive_index = node_fetch_primitive_index(primitive_node); offset_primitive(primitives[primitive_index], offset_); aabbs[primitive_index].offset(offset_); } } BPE_API void virtual_node_split(virtual_node_t* node, raw_vector3d_t base_point, raw_vector3d_t normal) { plane_descriptor_t descriptor; descriptor.normal = raw_vector3d_t{normal.x * -1, normal.y * -1, normal.z * -1}; descriptor.point = base_point; auto plane = blobtree_new_virtual_node(descriptor); virtual_node_boolean_intersect(node, &plane); }