Implement Blobtree #1

Merged
ZCWang merged 1 commits from blobtree into master 7 months ago
  1. 67
      blobtree_structure/interface/blobtree.h
  2. 56
      blobtree_structure/interface/primitive_descriptor.h
  3. 462
      blobtree_structure/src/blobtree.cpp
  4. 266
      blobtree_structure/src/primitive_descriptor.cpp

67
blobtree_structure/interface/blobtree.h

@ -1,25 +1,66 @@
#pragma once
#include "primitive_descriptor.h"
typedef struct Blobtree blobtree_t; // fixed complete binary tree of 16 layers
typedef struct Node node_t; // real node in the tree
typedef struct VirtualNode virtual_node_t; // almost same as node_t, but has parent's and children's pointers to indicate the
// hierarchy, and it is outside of the tree
// double node in the tree
typedef struct _node_t {
unsigned int non_null : 1; // 0 for null pointer, 1 for non-null nodes
unsigned int primitive : 1; // 0 for internal node, 1 for primitive node
unsigned int operate : 2; // 0 for union, 1 for intersection, 2 for difference, 3 for unset
unsigned int cross : 2; // 0 for no cross, 1 for cross to parent, 2 for cross left child, 3 for cross right child
unsigned int
index : 16; // If primitive node, the index to the primitive information, if cross node, the index to the cross node
unsigned int main_index : 8; // use in cross node
unsigned int placeholder : 2; // unused
} node_t;
typedef struct _primitive_node_t {
descriptor type;
void* desc; // Type conversion when using
} primitive_node_t;
// almost same as node_t, but has parent's and children's pointers to indicate
// the hierarchy, and it is outside of the tree
typedef struct _virtual_node_t {
unsigned int main_index : 16;
unsigned int inner_index : 16;
} virtual_node_t;
// fixed complete binary tree of 16 layers
typedef struct _blobtree_t {
node_t** structure;
int structure_size;
primitive_node_t* primitive;
int primitive_size;
} blobtree_t;
EXTERN_C_BEGIN
API blobtree_t* create_blobtree();
API void free_blobtree(blobtree_t* blobtree);
API virtual_node_t* blobtree_new_virtual_node(const constant_descriptor_t* desc);
API void blobtree_free_virtual_node(virtual_node_t* node);
API virtual_node_t blobtree_new_virtual_node_constant(const constant_descriptor_t* desc, blobtree_t* blobtree);
API virtual_node_t blobtree_new_virtual_node_plane(const plane_descriptor_t* desc, blobtree_t* blobtree);
API virtual_node_t blobtree_new_virtual_node_sphere(const sphere_descriptor_t* desc, blobtree_t* blobtree);
API virtual_node_t blobtree_new_virtual_node_cylinder(const cylinder_descriptor_t* desc, blobtree_t* blobtree);
API virtual_node_t blobtree_new_virtual_node_cone(const cone_descriptor_t* desc, blobtree_t* blobtree);
API virtual_node_t blobtree_new_virtual_node_box(const box_descriptor_t* desc, blobtree_t* blobtree);
API virtual_node_t blobtree_new_virtual_node_mesh(const mesh_descriptor_t* desc, blobtree_t* blobtree);
API virtual_node_t blobtree_new_virtual_node_extrude(const extrude_descriptor_t* desc, blobtree_t* blobtree);
API void blobtree_free_virtual_node(virtual_node_t* node);
API bool virtual_node_set_parent(virtual_node_t* node, virtual_node_t* parent, blobtree_t* blobtree);
API bool virtual_node_set_left_child(virtual_node_t* node, virtual_node_t* child, blobtree_t* blobtree);
API bool virtual_node_set_right_child(virtual_node_t* node, virtual_node_t* child, blobtree_t* blobtree);
API bool virtual_node_add_child(virtual_node_t* node, virtual_node_t* child, blobtree_t* blobtree);
API bool virtual_node_remove_child(virtual_node_t* node, virtual_node_t* child, blobtree_t* blobtree);
API void virtual_node_set_parent(virtual_node_t* node, virtual_node_t* parent);
API void virtual_node_set_left_child(virtual_node_t* node, virtual_node_t* child);
API void virtual_node_set_right_child(virtual_node_t* node, virtual_node_t* child);
API void virtual_node_add_child(virtual_node_t* node, virtual_node_t* child);
API void virtual_node_remove_child(virtual_node_t* node, virtual_node_t* child);
API void virtual_node_replace_primitive(virtual_node_t* node, const constant_descriptor_t* desc);
API bool virtual_node_replace_primitive_constant(virtual_node_t* node, const constant_descriptor_t* desc, blobtree_t* blobtree);
API bool virtual_node_replace_primitive_plane(virtual_node_t* node, const plane_descriptor_t* desc, blobtree_t* blobtree);
API bool virtual_node_replace_primitive_sphere(virtual_node_t* node, const sphere_descriptor_t* desc, blobtree_t* blobtree);
API bool virtual_node_replace_primitive_cylinder(virtual_node_t* node, const cylinder_descriptor_t* desc, blobtree_t* blobtree);
API bool virtual_node_replace_primitive_cone(virtual_node_t* node, const cone_descriptor_t* desc, blobtree_t* blobtree);
API bool virtual_node_replace_primitive_box(virtual_node_t* node, const box_descriptor_t* desc, blobtree_t* blobtree);
API bool virtual_node_replace_primitive_mesh(virtual_node_t* node, const mesh_descriptor_t* desc, blobtree_t* blobtree);
API bool virtual_node_replace_primitive_extrude(virtual_node_t* node, const extrude_descriptor_t* desc, blobtree_t* blobtree);
EXTERN_C_END

56
blobtree_structure/interface/primitive_descriptor.h

@ -1,11 +1,13 @@
#pragma once
#include <macros.h>
#include <iostream>
typedef struct _raw_vector3d_t {
double x, y, z;
} raw_vector3d_t;
typedef enum { constant, plane, sphere, cylinder, cone, box, mesh, extrude } descriptor;
typedef struct _constant_descriptor_t {
double value;
} constant_descriptor_t;
@ -20,12 +22,56 @@ typedef struct _sphere_descriptor_t {
double radius;
} sphere_descriptor_t;
EXTERN_C API double evaluate_constant(constant_descriptor_t* desc, raw_vector3d_t point);
EXTERN_C API double evaluate_plane(plane_descriptor_t* desc, raw_vector3d_t point);
EXTERN_C API double evaluate_sphere(sphere_descriptor_t* desc, raw_vector3d_t point);
typedef struct _cylinder_descriptor_t {
raw_vector3d_t bottom_origion;
double radius;
raw_vector3d_t offset;
} cylinder_descriptor_t;
typedef struct _cone_descriptor_t {
raw_vector3d_t top_point;
raw_vector3d_t bottom_point;
double radius1;
double radius2;
} cone_descriptor_t;
typedef struct _box_descriptor_t {
raw_vector3d_t left_bottom_point;
double length;
double width;
double height;
} box_descriptor_t;
typedef struct _mesh_descriptor_t {
int face_number;
raw_vector3d_t* points;
int* indexs;
int** faces;
} mesh_descriptor_t;
typedef struct _extrude_descriptor_t {
int edges_number;
raw_vector3d_t extusion;
raw_vector3d_t* points;
double* bulges;
} extrude_descriptor_t;
EXTERN_C double evaluate_constant(constant_descriptor_t* desc, raw_vector3d_t point);
EXTERN_C double evaluate_plane(plane_descriptor_t* desc, raw_vector3d_t point);
EXTERN_C double evaluate_sphere(sphere_descriptor_t* desc, raw_vector3d_t point);
EXTERN_C double evaluate_cylinder(cylinder_descriptor_t* desc, raw_vector3d_t point);
EXTERN_C double evaluate_cone(cone_descriptor_t* desc, raw_vector3d_t point);
EXTERN_C double evaluate_box(box_descriptor_t* desc, raw_vector3d_t point);
EXTERN_C double evaluate_mesh(mesh_descriptor_t* desc, raw_vector3d_t point);
EXTERN_C double evaluate_extrude(extrude_descriptor_t* desc, raw_vector3d_t point);
#define evaluate(desc, point) \
_Generic((desc), \
constant_descriptor_t *: evaluate_constant, \
plane_descriptor_t *: evaluate_plane, \
sphere_descriptor_t *: evaluate_sphere)(desc, point)
sphere_descriptor_t *: evaluate_sphere, \
cylinder_descriptor_t *: evaluate_cylinder, \
cone_descriptor_t *: evaluate_cone, \
box_descriptor_t *: evaluate_box, \
mesh_descriptor_t *: evaluate_mesh, \
extrude_descriptor_t *: evaluate_extrude)(desc, point)

462
blobtree_structure/src/blobtree.cpp

@ -0,0 +1,462 @@
#include "blobtree.h"
#include <cstdlib>
constexpr auto tree_vector_length = 65535;
void create_new_sub_blobtree(blobtree_t* blobtree)
{
blobtree->structure_size += 1;
blobtree->structure = static_cast<node_t**>(realloc(blobtree->structure, blobtree->structure_size * sizeof(node_t*)));
if (blobtree->structure == nullptr) { throw std::runtime_error("Memory allocation failed."); }
blobtree->structure[blobtree->structure_size - 1] = static_cast<node_t*>(malloc(tree_vector_length * sizeof(node_t)));
if (blobtree->structure[blobtree->structure_size - 1] == nullptr) { throw std::runtime_error("Memory allocation failed."); }
memset(blobtree->structure[blobtree->structure_size - 1], 0.0, tree_vector_length * sizeof(node_t));
}
void free_sub_blobtree(blobtree_t* blobtree, const int index)
{
free(blobtree->structure[index]);
blobtree->structure[index] = nullptr;
}
int get_next_available_index(blobtree_t* blobtree)
{
for (int i = 0; i < blobtree->structure_size; i++) {
if (blobtree->structure[i] == nullptr) {
blobtree->structure[i] = static_cast<node_t*>(malloc(tree_vector_length * sizeof(node_t)));
if (blobtree->structure[i] == nullptr) { throw std::runtime_error("Memory allocation failed."); }
memset(blobtree->structure[i], 0.0, tree_vector_length * sizeof(node_t));
return i;
}
}
create_new_sub_blobtree(blobtree);
return blobtree->structure_size - 1;
}
blobtree_t* create_blobtree()
{
blobtree_t* blobtree = static_cast<blobtree_t*>(malloc(sizeof(blobtree_t)));
if (blobtree == nullptr) { throw std::runtime_error("Memory allocation failed."); }
blobtree->structure = static_cast<node_t**>(malloc(sizeof(node_t*)));
if (blobtree->structure == nullptr) { throw std::runtime_error("Memory allocation failed."); }
blobtree->structure_size = 0;
blobtree->primitive = static_cast<primitive_node_t*>(malloc(sizeof(primitive_node_t)));
if (blobtree->primitive == nullptr) { throw std::runtime_error("Memory allocation failed."); }
blobtree->primitive_size = 0;
return blobtree;
}
void free_blobtree(blobtree_t* blobtree)
{
for (int i = 0; i < blobtree->structure_size; i++) { free(blobtree->structure[i]); }
free(blobtree->structure);
free(blobtree->primitive);
free(blobtree);
}
virtual_node_t push_primitive_node(blobtree_t* blobtree, const primitive_node_t& primitive_node)
{
blobtree->primitive_size += 1;
blobtree->primitive =
static_cast<primitive_node_t*>(realloc(blobtree->primitive, (blobtree->primitive_size) * sizeof(primitive_node_t)));
if (blobtree->primitive == nullptr) { throw std::runtime_error("Memory allocation failed."); }
blobtree->primitive[blobtree->primitive_size - 1] = primitive_node;
node_t new_node;
new_node.non_null = 1;
new_node.primitive = 1;
new_node.operate = 3;
new_node.cross = 0;
new_node.index = blobtree->primitive_size - 1;
new_node.main_index = 0;
blobtree->structure[0] = static_cast<node_t*>(realloc(blobtree->structure[0], (blobtree->primitive_size) * sizeof(node_t)));
if (blobtree->primitive == nullptr) { throw std::runtime_error("Memory allocation failed."); }
blobtree->structure[0][blobtree->primitive_size - 1] = new_node;
virtual_node_t virtual_node;
virtual_node.main_index = 0;
virtual_node.inner_index = blobtree->primitive_size - 1;
return virtual_node;
}
virtual_node_t blobtree_new_virtual_node_constant(const constant_descriptor_t* desc, blobtree_t* blobtree)
{
primitive_node_t primitive_node;
primitive_node.desc = (void*)desc;
primitive_node.type = constant;
return push_primitive_node(blobtree, primitive_node);
}
virtual_node_t blobtree_new_virtual_node_plane(const plane_descriptor_t* desc, blobtree_t* blobtree)
{
primitive_node_t primitive_node;
primitive_node.desc = (void*)desc;
primitive_node.type = plane;
return push_primitive_node(blobtree, primitive_node);
}
virtual_node_t blobtree_new_virtual_node_sphere(const sphere_descriptor_t* desc, blobtree_t* blobtree)
{
primitive_node_t primitive_node;
primitive_node.desc = (void*)desc;
primitive_node.type = sphere;
return push_primitive_node(blobtree, primitive_node);
}
virtual_node_t blobtree_new_virtual_node_cylinder(const cylinder_descriptor_t* desc, blobtree_t* blobtree)
{
primitive_node_t primitive_node;
primitive_node.desc = (void*)desc;
primitive_node.type = cylinder;
return push_primitive_node(blobtree, primitive_node);
}
virtual_node_t blobtree_new_virtual_node_cone(const cone_descriptor_t* desc, blobtree_t* blobtree)
{
primitive_node_t primitive_node;
primitive_node.desc = (void*)desc;
primitive_node.type = cone;
return push_primitive_node(blobtree, primitive_node);
}
virtual_node_t blobtree_new_virtual_node_box(const box_descriptor_t* desc, blobtree_t* blobtree)
{
primitive_node_t primitive_node;
primitive_node.desc = (void*)desc;
primitive_node.type = box;
return push_primitive_node(blobtree, primitive_node);
}
virtual_node_t blobtree_new_virtual_node_mesh(const mesh_descriptor_t* desc, blobtree_t* blobtree)
{
primitive_node_t primitive_node;
primitive_node.desc = (void*)desc;
primitive_node.type = mesh;
return push_primitive_node(blobtree, primitive_node);
}
virtual_node_t blobtree_new_virtual_node_extrude(const extrude_descriptor_t* desc, blobtree_t* blobtree)
{
primitive_node_t primitive_node;
primitive_node.desc = (void*)desc;
primitive_node.type = extrude;
return push_primitive_node(blobtree, primitive_node);
}
void blobtree_free_virtual_node(virtual_node_t* node) { ; }
virtual_node_t get_left_child_index(virtual_node_t node, blobtree_t* blobtree)
{
int left_child_index = 2 * node.inner_index + 1;
auto temp = blobtree->structure[node.main_index][left_child_index];
if (temp.cross == 2) {
return virtual_node_t{temp.main_index, temp.index};
} else if (left_child_index >= tree_vector_length) {
auto main_index = get_next_available_index(blobtree);
return virtual_node_t{(unsigned int)main_index, 0};
} else {
return virtual_node_t{node.main_index, (unsigned int)left_child_index};
}
}
virtual_node_t get_right_child_index(virtual_node_t node, blobtree_t* blobtree)
{
int right_child_index = 2 * node.inner_index + 2;
auto temp = blobtree->structure[node.main_index][right_child_index];
if (temp.cross == 3) {
return virtual_node_t{temp.main_index, temp.index};
} else if (right_child_index >= tree_vector_length) {
auto main_index = get_next_available_index(blobtree);
return virtual_node_t{(unsigned int)main_index, 0};
} else {
return virtual_node_t{node.main_index, (unsigned int)right_child_index};
}
}
virtual_node_t get_parent_index(virtual_node_t node, blobtree_t* blobtree)
{
int parent_child_index = (node.inner_index - 1) / 2;
auto temp = blobtree->structure[node.main_index][parent_child_index];
if (temp.cross == 1) {
return virtual_node_t{temp.main_index, temp.index};
} else {
return virtual_node_t{node.main_index, (unsigned int)parent_child_index};
}
}
bool is_primitive_node(node_t node) { return node.primitive == 1; }
bool is_null_node(node_t node) { return node.non_null == 0; }
bool is_left_node(const int index) { return index % 2 == 1; }
bool is_right_node(const int index) { return index % 2 == 0; }
bool is_root_node(const int index) { return index == 0; }
bool update_inner(virtual_node_t old_node, virtual_node_t new_node, blobtree_t* blobtree)
{
if (is_null_node(blobtree->structure[old_node.main_index][old_node.inner_index])) { return true; }
if (new_node.inner_index >= tree_vector_length) { return false; }
if (!is_null_node(blobtree->structure[new_node.main_index][new_node.inner_index])) { return false; }
if (is_primitive_node(blobtree->structure[new_node.main_index][new_node.inner_index])) {
blobtree->structure[new_node.main_index][new_node.inner_index] =
blobtree->structure[old_node.main_index][old_node.inner_index];
blobtree->structure[old_node.main_index][old_node.inner_index].non_null = 0;
return true;
} else {
if (!update_inner(get_left_child_index(old_node, blobtree), get_left_child_index(new_node, blobtree), blobtree)) {
return false;
}
if (!update_inner(get_right_child_index(old_node, blobtree), get_right_child_index(new_node, blobtree), blobtree)) {
return false;
}
blobtree->structure[new_node.main_index][new_node.inner_index] =
blobtree->structure[old_node.main_index][old_node.inner_index];
blobtree->structure[old_node.main_index][old_node.inner_index].non_null = 0;
return true;
}
}
void copy_sub_blobtree(const int dst_main_index, const int src_main_index, blobtree_t* blobtree)
{
memcpy(blobtree->structure[dst_main_index], blobtree->structure[src_main_index], tree_vector_length * sizeof(node_t));
}
bool update(virtual_node_t old_node, virtual_node_t new_node, blobtree_t* blobtree)
{
// Virtual update, check for out-of-bounds
auto temp_mian_index = get_next_available_index(blobtree);
copy_sub_blobtree(temp_mian_index, new_node.main_index, blobtree);
if (update_inner(old_node, virtual_node_t{(unsigned)temp_mian_index, new_node.inner_index}, blobtree)) {
copy_sub_blobtree(new_node.main_index, temp_mian_index, blobtree);
free_sub_blobtree(blobtree, temp_mian_index);
return true;
} else {
free_sub_blobtree(blobtree, temp_mian_index);
return false;
}
}
bool virtual_node_boolean_union(virtual_node_t* node1, virtual_node_t* node2, blobtree_t* blobtree) { return false; }
bool virtual_node_boolean_union_save_mode(virtual_node_t* node1, virtual_node_t* node2, blobtree_t* blobtree) { return false; }
bool check(virtual_node_t node, blobtree_t* blobtree)
{
if (is_null_node(blobtree->structure[node.main_index][node.inner_index])) { return false; }
if (is_primitive_node(blobtree->structure[node.main_index][node.inner_index])) { return true; }
if (!check(get_left_child_index(node, blobtree), blobtree)) { return false; }
if (!check(get_right_child_index(node, blobtree), blobtree)) { return false; }
return true;
}
bool virtual_node_set_parent(virtual_node_t* node, virtual_node_t* parent, blobtree_t* blobtree)
{
if (node->main_index == 0) { return false; }
auto parent_index = get_parent_index(*node, blobtree);
if (!is_root_node(parent_index.inner_index)
&& !is_null_node(blobtree->structure[parent_index.main_index][parent_index.inner_index])) {
return false;
}
auto left_child_index = get_left_child_index(*parent, blobtree);
auto right_child_index = get_right_child_index(*parent, blobtree);
if (is_left_node(node->inner_index)
&& is_null_node(blobtree->structure[left_child_index.main_index][left_child_index.inner_index])) {
if (is_root_node(node->inner_index)) {
if (!update(*node, get_left_child_index(*node, blobtree), blobtree)) { return false; }
}
if (!update(*parent, get_parent_index(*node, blobtree), blobtree)) { return false; }
return true;
} else if (is_right_node(node->inner_index)
&& is_null_node(blobtree->structure[right_child_index.main_index][right_child_index.inner_index])) {
if (is_root_node(node->inner_index)) {
if (!update(*node, get_right_child_index(*node, blobtree), blobtree)) { return false; }
}
if (!update(*parent, get_parent_index(*node, blobtree), blobtree)) { return false; }
return true;
} else {
return false;
}
}
bool virtual_node_set_left_child(virtual_node_t* node, virtual_node_t* child, blobtree_t* blobtree)
{
int parent_index = get_parent_index(*child, blobtree).inner_index;
int left_child_index = get_left_child_index(*node, blobtree).inner_index;
if (!is_root_node(child->inner_index) && !is_null_node(blobtree->structure[child->main_index][parent_index])) {
return false;
}
if (!is_null_node(blobtree->structure[node->main_index][left_child_index])) { return false; }
if (update(*child, virtual_node_t{node->main_index, (unsigned int)left_child_index}, blobtree)) {
*child = *node;
return true;
} else {
blobtree->structure[node->main_index][left_child_index].non_null = 1;
blobtree->structure[node->main_index][left_child_index].cross = 2;
blobtree->structure[node->main_index][left_child_index].main_index = child->main_index;
blobtree->structure[node->main_index][left_child_index].index = child->inner_index;
blobtree->structure[child->main_index][parent_index].non_null = 1;
blobtree->structure[child->main_index][parent_index].cross = 1;
blobtree->structure[child->main_index][parent_index].main_index = node->main_index;
blobtree->structure[child->main_index][parent_index].index = node->inner_index;
return true;
}
}
bool virtual_node_set_right_child(virtual_node_t* node, virtual_node_t* child, blobtree_t* blobtree)
{
int parent_index = get_parent_index(*child, blobtree).inner_index;
int right_child_index = get_right_child_index(*node, blobtree).inner_index;
if (!is_root_node(child->inner_index) && !is_null_node(blobtree->structure[child->main_index][parent_index])) {
return false;
}
if (!is_null_node(blobtree->structure[node->main_index][right_child_index])) { return false; }
if (update(*child, virtual_node_t{node->main_index, (unsigned int)right_child_index}, blobtree)) {
*child = *node;
return true;
} else {
blobtree->structure[node->main_index][right_child_index].non_null = 1;
blobtree->structure[node->main_index][right_child_index].cross = 3;
blobtree->structure[node->main_index][right_child_index].main_index = child->main_index;
blobtree->structure[node->main_index][right_child_index].index = child->inner_index;
blobtree->structure[child->main_index][parent_index].non_null = 1;
blobtree->structure[child->main_index][parent_index].cross = 1;
blobtree->structure[child->main_index][parent_index].main_index = node->main_index;
blobtree->structure[child->main_index][parent_index].index = node->inner_index;
return true;
}
}
bool virtual_node_add_child(virtual_node_t* node, virtual_node_t* child, blobtree_t* blobtree)
{
auto parent_index = get_parent_index(*child, blobtree).inner_index;
if (!is_root_node(child->inner_index) && !is_null_node(blobtree->structure[child->main_index][parent_index])) {
return false;
}
if (is_null_node(blobtree->structure[node->main_index][get_left_child_index(*node, blobtree).inner_index])) {
virtual_node_set_left_child(node, child, blobtree);
return true;
} else if (is_null_node(blobtree->structure[node->main_index][get_right_child_index(*node, blobtree).inner_index])) {
virtual_node_set_right_child(node, child, blobtree);
return true;
} else {
return false;
}
}
void remove(virtual_node_t node, blobtree_t* blobtree)
{
if (is_null_node(blobtree->structure[node.main_index][node.inner_index])) { return; }
blobtree->structure[node.main_index][node.inner_index].non_null = 0;
if (is_primitive_node(blobtree->structure[node.main_index][node.inner_index])) { return; }
remove(get_left_child_index(node, blobtree), blobtree);
remove(get_right_child_index(node, blobtree), blobtree);
}
bool operator==(const virtual_node_t& node1, const virtual_node_t& node2)
{
return node1.main_index == node2.main_index && node1.inner_index == node2.inner_index;
}
bool virtual_node_remove_child(virtual_node_t* node, virtual_node_t* child, blobtree_t* blobtree)
{
if (get_left_child_index(*node, blobtree) == *child) {
remove(*child, blobtree);
return true;
} else if (get_right_child_index(*node, blobtree) == *child) {
remove(*child, blobtree);
return true;
} else {
return false;
}
}
bool virtual_node_replace_primitive_constant(virtual_node_t* node, const constant_descriptor_t* desc, blobtree_t* blobtree)
{
if (!is_primitive_node(blobtree->structure[node->main_index][node->inner_index])) { return false; }
blobtree->primitive[blobtree->structure[node->main_index][node->inner_index].index].desc = (void*)desc;
blobtree->primitive[blobtree->structure[node->main_index][node->inner_index].index].type = constant;
return true;
}
bool virtual_node_replace_primitive_plane(virtual_node_t* node, const plane_descriptor_t* desc, blobtree_t* blobtree)
{
if (!is_primitive_node(blobtree->structure[node->main_index][node->inner_index])) { return false; }
blobtree->primitive[blobtree->structure[node->main_index][node->inner_index].index].desc = (void*)desc;
blobtree->primitive[blobtree->structure[node->main_index][node->inner_index].index].type = plane;
return true;
}
bool virtual_node_replace_primitive_sphere(virtual_node_t* node, const sphere_descriptor_t* desc, blobtree_t* blobtree)
{
if (!is_primitive_node(blobtree->structure[node->main_index][node->inner_index])) { return false; }
blobtree->primitive[blobtree->structure[node->main_index][node->inner_index].index].desc = (void*)desc;
blobtree->primitive[blobtree->structure[node->main_index][node->inner_index].index].type = sphere;
return true;
}
bool virtual_node_replace_primitive_cylinder(virtual_node_t* node, const cylinder_descriptor_t* desc, blobtree_t* blobtree)
{
if (!is_primitive_node(blobtree->structure[node->main_index][node->inner_index])) { return false; }
blobtree->primitive[blobtree->structure[node->main_index][node->inner_index].index].desc = (void*)desc;
blobtree->primitive[blobtree->structure[node->main_index][node->inner_index].index].type = cylinder;
return true;
}
bool virtual_node_replace_primitive_cone(virtual_node_t* node, const cone_descriptor_t* desc, blobtree_t* blobtree)
{
if (!is_primitive_node(blobtree->structure[node->main_index][node->inner_index])) { return false; }
blobtree->primitive[blobtree->structure[node->main_index][node->inner_index].index].desc = (void*)desc;
blobtree->primitive[blobtree->structure[node->main_index][node->inner_index].index].type = cone;
return true;
}
bool virtual_node_replace_primitive_box(virtual_node_t* node, const box_descriptor_t* desc, blobtree_t* blobtree)
{
if (!is_primitive_node(blobtree->structure[node->main_index][node->inner_index])) { return false; }
blobtree->primitive[blobtree->structure[node->main_index][node->inner_index].index].desc = (void*)desc;
blobtree->primitive[blobtree->structure[node->main_index][node->inner_index].index].type = box;
return true;
}
bool virtual_node_replace_primitive_mesh(virtual_node_t* node, const mesh_descriptor_t* desc, blobtree_t* blobtree)
{
if (!is_primitive_node(blobtree->structure[node->main_index][node->inner_index])) { return false; }
blobtree->primitive[blobtree->structure[node->main_index][node->inner_index].index].desc = (void*)desc;
blobtree->primitive[blobtree->structure[node->main_index][node->inner_index].index].type = mesh;
return true;
}
bool virtual_node_replace_primitive_extrude(virtual_node_t* node, const extrude_descriptor_t* desc, blobtree_t* blobtree)
{
if (!is_primitive_node(blobtree->structure[node->main_index][node->inner_index])) { return false; }
blobtree->primitive[blobtree->structure[node->main_index][node->inner_index].index].desc = (void*)desc;
blobtree->primitive[blobtree->structure[node->main_index][node->inner_index].index].type = extrude;
return true;
}

266
blobtree_structure/src/primitive_descriptor.cpp

@ -0,0 +1,266 @@
#include "primitive_descriptor.h"
typedef raw_vector3d_t vec3;
vec3 add(const vec3& point1, const vec3& point2) { return vec3{point1.x + point2.x, point1.y + point2.y, point1.z + point2.z}; }
vec3 operator+(const vec3& point1, const vec3& point2) { return add(point1, point2); }
vec3 sub(const vec3& point1, const vec3& point2) { return vec3{point1.x - point2.x, point1.y - point2.y, point1.z - point2.z}; }
vec3 operator-(const vec3& point1, const vec3& point2) { return sub(point1, point2); }
vec3 mul(const vec3& vector, const double scalar) { return vec3{vector.x * scalar, vector.y * scalar, vector.z * scalar}; }
vec3 operator*(const vec3& point1, const double scalar) { return mul(point1, scalar); }
vec3 div(const vec3& vector, const double scalar)
{
if (scalar == 0) { throw std::runtime_error("Division by zero error."); }
return vec3{vector.x / scalar, vector.y / scalar, vector.z / scalar};
}
vec3 operator/(const vec3& point1, const double scalar) { return div(point1, scalar); }
double dot(const vec3& vector1, const vec3& vector2)
{
return vector1.x * vector2.x + vector1.y * vector2.y + vector1.z * vector2.z;
}
double dot2(const vec3& vector) { return dot(vector, vector); }
vec3 cross(const vec3& vector1, const vec3& vector2)
{
return vec3{vector1.y * vector2.z - vector1.z * vector2.y,
vector1.z * vector2.x - vector1.x * vector2.z,
vector1.x * vector2.y - vector1.y * vector2.x};
}
double len(const vec3& vector) { return sqrt(dot(vector, vector)); }
double dis(const vec3& point1, const vec3& point2) { return len(sub(point1, point2)); }
double clamp(const double t, const double min, const double max)
{
if (t <= min) { return min; }
if (t >= max) { return max; }
return t;
}
double sign(const double t) { return t >= 0.0 ? 1.0 : -1.0; }
vec3 normalize(const vec3& vector)
{
double temp = len(vector);
if (abs(temp) < 1e-8) { throw std::runtime_error("Cannot normalize a zero-length vector."); }
temp = 1.0 / temp;
return vec3{vector.x * temp, vector.y * temp, vector.z * temp};
}
double evaluate_constant(constant_descriptor_t* desc, raw_vector3d_t point) { return desc->value; }
double evaluate_plane(plane_descriptor_t* desc, raw_vector3d_t point) { return dot(point - desc->point, desc->normal); }
double evaluate_sphere(sphere_descriptor_t* desc, raw_vector3d_t point) { return dis(point, desc->center) - desc->radius; }
double evaluate_cylinder(cylinder_descriptor_t* desc, raw_vector3d_t point)
{
vec3& b = desc->bottom_origion;
vec3 a = b + desc->offset;
vec3& p = point;
double r = desc->radius;
vec3 ba = b - a;
vec3 pa = p - a;
double baba = dot(ba, ba);
double paba = dot(pa, ba);
double x = len(pa * baba - ba * paba) - r * baba;
double y = abs(paba - baba * 0.5) - baba * 0.5;
double x2 = x * x;
double y2 = y * y * baba;
double d = (fmax(x, y) < 0.0) ? -fmin(x2, y2) : (((x > 0.0) ? x2 : 0.0) + ((y > 0.0) ? y2 : 0.0));
return sign(d) * sqrt(abs(d)) / baba;
}
double evaluate_cone(cone_descriptor_t* desc, raw_vector3d_t point)
{
vec3& a = desc->top_point;
vec3& b = desc->bottom_point;
vec3& p = point;
double ra = desc->radius1;
double rb = desc->radius2;
double rba = rb - ra;
double baba = dot(b - a, b - a);
double papa = dot(p - a, p - a);
double paba = dot(p - a, b - a) / baba;
double x = sqrt(papa - paba * paba * baba);
double cax = fmax(0.0, x - ((paba < 0.5) ? ra : rb));
double cay = abs(paba - 0.5) - 0.5;
double k = rba * rba + baba;
double f = clamp((rba * (x - ra) + paba * baba) / k, 0.0, 1.0);
double cbx = x - ra - f * rba;
double cby = paba - f;
double s = (cbx < 0.0 && cay < 0.0) ? -1.0 : 1.0;
return s * sqrt(fmin(cax * cax + cay * cay * baba, cbx * cbx + cby * cby * baba));
}
double evaluate_box(box_descriptor_t* desc, raw_vector3d_t point)
{
// Get the minimum and maximum bounding coordinates of the box
auto min_point = desc->left_bottom_point;
auto max_point = min_point + vec3{desc->length, desc->width, desc->height};
// Point in the box
if (point.x >= min_point.x && point.x <= max_point.x && point.y >= min_point.y && point.y <= max_point.y
&& point.z >= min_point.z && point.z <= max_point.z) {
double min = fmin(point.x - min_point.x, max_point.x - point.x);
min = fmin(min, fmin(point.y - min_point.y, max_point.y - point.y));
min = fmin(min, fmin(point.z - min_point.y, max_point.z - point.z));
return -min;
} else {
// Calculate the closest distance from the point to the border of each dimension of the box
double dx = fmax(fmax(min_point.x - point.x, point.x - max_point.x), 0.0);
double dy = fmax(fmax(min_point.y - point.y, point.y - max_point.y), 0.0);
double dz = fmax(fmax(min_point.z - point.z, point.z - max_point.z), 0.0);
return sqrt(dx * dx + dy * dy + dz * dz);
}
}
double triangle_sdf(const vec3& p, const vec3& a, const vec3& b, const vec3& c)
{
vec3 ba = b - a;
vec3 pa = p - a;
vec3 cb = c - b;
vec3 pb = p - b;
vec3 ac = a - c;
vec3 pc = p - c;
vec3 nor = cross(ba, ac);
return sqrt((sign(dot(cross(ba, nor), pa)) + sign(dot(cross(cb, nor), pb)) + sign(dot(cross(ac, nor), pc)) < 2.0)
? fmin(fmin(dot2(ba * clamp(dot(ba, pa) / dot2(ba), 0.0, 1.0) - pa),
dot2(cb * clamp(dot(cb, pb) / dot2(cb), 0.0, 1.0) - pb)),
dot2(ac * clamp(dot(ac, pc) / dot2(ac), 0.0, 1.0) - pc))
: dot(nor, pa) * dot(nor, pa) / dot2(nor));
}
bool ray_intersects_triangle(const vec3& point, const vec3& dir, const vec3& v0, const vec3& v1, const vec3& v2)
{
vec3 e1 = v1 - v0;
vec3 e2 = v2 - v0;
vec3 s = point - v0;
vec3 s1 = cross(dir, e2);
vec3 s2 = cross(s, e1);
double coeff = 1.0 / dot(s1, e1);
double t = coeff * dot(s2, e2);
double b1 = coeff * dot(s1, s);
double b2 = coeff * dot(s2, dir);
return t >= 0 && b1 >= 0 && b2 >= 0 && (1 - b1 - b2) >= 0;
}
double evaluate_mesh(mesh_descriptor_t* desc, raw_vector3d_t point)
{
// Note: There is no check for out-of-bounds access to points, indexes and faces
auto points = desc->points;
auto indexs = desc->indexs;
auto face = desc->faces;
double min_distance = std::numeric_limits<double>::infinity();
int count = 0;
for (int i = 0; i < desc->face_number; i++) {
int begin_index = face[i][0];
int length = face[i][1];
auto& point0 = points[indexs[begin_index]];
bool flag = false;
for (int j = 1; j < length - 1; j++) {
double temp = triangle_sdf(point, point0, points[indexs[j]], points[indexs[j + 1]]);
min_distance = fmin(min_distance, temp);
if (!flag
&& ray_intersects_triangle(point, vec3{1.0, 0.0, 0.0}, point0, points[indexs[j]], points[indexs[j + 1]])) {
flag = true;
}
}
if (flag) { count++; }
}
if (min_distance < 1e-8) { return 0; }
if (count % 2 == 1) {
return -min_distance;
} else {
return min_distance;
}
}
double evaluate_extrude(extrude_descriptor_t* desc, raw_vector3d_t point)
{
// Note: There is no check for out-of-bounds access to points and bulges
auto points = desc->points;
auto bulges = desc->bulges;
auto extusion = desc->extusion;
double min_distance = std::numeric_limits<double>::infinity();
int count = 0;
// Note: Currently only straight edges are considered, the bottom and top surfaces are polygons
auto& point0 = points[0];
bool flag1 = false;
bool flag2 = false;
for (int i = 1; i < desc->edges_number - 1; i++) {
// Bottom
double temp = triangle_sdf(point, point0, points[i], points[i + 1]);
min_distance = fmin(min_distance, temp);
if (!flag1 && ray_intersects_triangle(point, vec3{1.0, 0.0, 0.0}, point0, points[i], points[i + 1])) { flag1 = true; }
// Top
temp = triangle_sdf(point, point0 + extusion, points[i] + extusion, points[i + 1] + extusion);
min_distance = fmin(min_distance, temp);
if (!flag2
&& ray_intersects_triangle(point,
vec3{1.0, 0.0, 0.0},
point0 + extusion,
points[i] + extusion,
points[i + 1] + extusion)) {
flag2 = true;
}
}
if (flag1) { count++; }
if (flag2) { count++; }
// Side
for (int i = 0; i < desc->edges_number; i++) {
auto& point1 = points[i];
vec3 point2;
if (i + 1 == desc->edges_number) {
point2 = points[0];
} else {
point2 = points[i + 1];
}
auto point3 = point2 + extusion;
auto point4 = point1 + extusion;
auto bulge = bulges[i];
if (abs(bulge) < 1e-8) {
// Straight Edge
bool flag = false;
double temp = triangle_sdf(point, point1, point2, point3);
min_distance = fmin(min_distance, temp);
if (!flag && ray_intersects_triangle(point, vec3{1.0, 0.0, 0.0}, point1, point2, point3)) { flag = true; }
temp = triangle_sdf(point, point1, point3, point4);
min_distance = fmin(min_distance, temp);
if (!flag && ray_intersects_triangle(point, vec3{1.0, 0.0, 0.0}, point1, point3, point4)) { flag = true; }
if (flag) { count++; }
} else {
// Curved Edge
// TODO
}
}
if (count % 2 == 1) {
return -min_distance;
} else {
return min_distance;
}
}
Loading…
Cancel
Save