Browse Source

Refactor SurfaceAreaCalculator: streamline constructors, improve function naming, and enhance integration methods

wch
mckay 3 months ago
parent
commit
d1b82fdcd7
  1. 52
      surface_integral/interface/SurfaceIntegrator.hpp
  2. 251
      surface_integral/src/SurfaceIntegrator.cpp

52
surface_integral/interface/SurfaceIntegrator.hpp

@ -1,7 +1,7 @@
#pragma once #pragma once
#include <primitive_process/interface/base/subface.hpp> #include <primitive_process/interface/base/subface.hpp>
#include "surface_integral/include/quadrature.hpp"
namespace internal namespace internal
{ {
@ -19,13 +19,12 @@ class SurfaceAreaCalculator
public: public:
// 构造函数,接受对 subface 的引用 // 构造函数,接受对 subface 的引用
explicit SurfaceAreaCalculator(const subface& surface); explicit SurfaceAreaCalculator(const subface& surface);
[[deprecated("Use calculate_new() instead")]] [[deprecated("Use calculate_new() instead")]] SurfaceAreaCalculator(const subface& surface,
SurfaceAreaCalculator(const subface& surface, const stl_vector_map<double>& u_breaks,
const stl_vector_map<double>& u_breaks, double umin,
double umin, double umax,
double umax, double vmin,
double vmin, double vmax);
double vmax);
SurfaceAreaCalculator(const subface& surface, const parametric_plane& uv_plane); SurfaceAreaCalculator(const subface& surface, const parametric_plane& uv_plane);
@ -39,31 +38,32 @@ public:
private: private:
const subface& m_surface; // 引用原始曲面 const subface& m_surface; // 引用原始曲面
stl_vector_map<double> m_u_breaks; // 分割线信息(可选) stl_vector_map<double> m_u_breaks; // 分割线信息(可选)
parametric_plane m_uv_plane; parametric_plane m_uv_plane;
double Umin = 0.0; // 参数域范围 double Umin = 0.0; // 参数域范围
double Umax = 1.0; double Umax = 1.0;
double Vmin = 0.0; double Vmin = 0.0;
double Vmax = 1.0; double Vmax = 1.0;
// 私有辅助函数(可扩展) // 私有辅助函数
template <typename Func>
double SurfaceAreaCalculator::GaussIntegrate1D(double a, double b, Func&& func, int q) const;
// 直线u=u_val与边界的交点 // 直线u=u_val与边界的交点
std::vector<double> FindVerticalIntersectionsOCCT(double u_val, std::vector<double> find_vertical_intersections(double u_val,
const std::vector<Handle(Geom2d_Curve)>& edges, const std::vector<Handle(Geom2d_Curve)>& edges,
double v_min, double v_min,
double v_max); double v_max);
bool IsPointInsideDomain(double u, bool is_point_inside_domain(double u,
double v, double v,
const std::vector<Handle(Geom2d_Curve)>& outerEdges, const std::vector<Handle(Geom2d_Curve)>& outerEdges,
const std::vector<Handle(Geom2d_Curve)>& innerEdges, const std::vector<Handle(Geom2d_Curve)>& innerEdges,
double u_min, double u_min,
double u_max, double u_max,
double v_min, double v_min,
double v_max); double v_max);
double integrate_over_uv(int num_samples) const; double newton_method(const std::function<equation_intermediate_t(double)>& F,
double v_initial,
double tolerance = 1e-8,
int max_iterations = 100);
void sort_and_unique_with_tol(std::vector<double>& vec, double epsilon = 1e-8);
}; };
} // namespace internal } // namespace internal

251
surface_integral/src/SurfaceIntegrator.cpp

@ -20,9 +20,8 @@ SurfaceAreaCalculator::SurfaceAreaCalculator(const subface& surfa
} }
SurfaceAreaCalculator::SurfaceAreaCalculator(const subface& surface, const parametric_plane& uv_plane) SurfaceAreaCalculator::SurfaceAreaCalculator(const subface& surface, const parametric_plane& uv_plane)
: m_surface(surface), m_uv_plane(uv_plane), : m_surface(surface), m_uv_plane(uv_plane), Umin(0.0), Umax(0.0), Vmin(0.0), Vmax(0.0)
Umin(0.0), Umax(0.0), Vmin(0.0), Vmax(0.0) { {
if (!uv_plane.chain_vertices.empty()) { if (!uv_plane.chain_vertices.empty()) {
// 初始化为第一个点的坐标 // 初始化为第一个点的坐标
double min_u = uv_plane.chain_vertices[0].x(); double min_u = uv_plane.chain_vertices[0].x();
@ -83,28 +82,12 @@ double SurfaceAreaCalculator::calculate(Func&& func, int gauss_order) const
// 在u方向进行高斯积分 // 在u方向进行高斯积分
auto u_integrand = [&](double u) { auto u_integrand = [&](double u) {
// 对每个u,找到v方向的精确交点 // 对每个u,找到v方向的精确交点
std::vector<double> v_breaks = {self.Vmin, self.Vmax}; std::vector<double> v_breaks = find_vertical_intersections(u);
auto outer_intersections = FindVerticalIntersectionsOCCT(u, self.outerEdges, self.Vmin, self.Vmax);
v_breaks.insert(v_breaks.end(), outer_intersections.begin(), outer_intersections.end());
auto inner_intersections = FindVerticalIntersectionsOCCT(u, self.innerEdges, self.Vmin, self.Vmax);
v_breaks.insert(v_breaks.end(), inner_intersections.begin(), inner_intersections.end());
// 排序并去重
sort_and_unique_with_tol(v_breaks, 1e-6);
// 在v方向进行高斯积分 // 在v方向进行高斯积分
auto v_integrand = [&](double v) { auto v_integrand = [&](double v) {
// 判断点是否在有效域内 // 判断点是否在有效域内
if (IsPointInsideself(u, if (IsPointInsideself(u, v, self.outerEdges, self.innerEdges, self.Umin, self.Umax, self.Vmin, self.Vmax)) {
v,
self.outerEdges,
self.innerEdges,
self.Umin,
self.Umax,
self.Vmin,
self.Vmax)) {
try { try {
gp_Pnt p; gp_Pnt p;
gp_Vec dU, dV; gp_Vec dU, dV;
@ -126,15 +109,8 @@ double SurfaceAreaCalculator::calculate(Func&& func, int gauss_order) const
// 检查区间中点是否有效 // 检查区间中点是否有效
double mid_v = (a + b) / 2.0; double mid_v = (a + b) / 2.0;
if (IsPointInsideself(u, if (IsPointInsideself(u, mid_v, self.outerEdges, self.innerEdges, self.Umin, self.Umax, self.Vmin, self.Vmax)) {
mid_v, v_integral += gauss_integrate_1D(a, b, v_integrand, gauss_order);
self.outerEdges,
self.innerEdges,
self.Umin,
self.Umax,
self.Vmin,
self.Vmax)) {
v_integral += GaussIntegrate1D(a, b, v_integrand, gauss_order);
} else { } else {
std::cout << "uv out of domain: (" << u << "," << mid_v << ")" << std::endl; std::cout << "uv out of domain: (" << u << "," << mid_v << ")" << std::endl;
} }
@ -151,11 +127,11 @@ double SurfaceAreaCalculator::calculate(Func&& func, int gauss_order) const
// 检查区间中点是否有效 // 检查区间中点是否有效
double mid_u = (a + b) / 2.0; double mid_u = (a + b) / 2.0;
auto v_intersections = FindVerticalIntersectionsOCCT(mid_u, self.outerEdges, self.Vmin, self.Vmax); auto v_intersections = find_vertical_intersections(mid_u, self.outerEdges, self.Vmin, self.Vmax);
if (!v_intersections.empty()) { // 确保该u区间有有效区域 if (!v_intersections.empty()) { // 确保该u区间有有效区域
double integralp = GaussIntegrate1D(a, b, u_integrand, gauss_order); double integralp = gauss_integrate_1D(a, b, u_integrand, gauss_order);
integral += integralp; integral += integralp;
std::cout << "integral " << i << ": " << integralp << std::endl; std::cout << "integral " << i << ": " << integralp << std::endl;
} }
@ -164,131 +140,144 @@ double SurfaceAreaCalculator::calculate(Func&& func, int gauss_order) const
return integral; return integral;
} }
// 在区间[a,b]上进行高斯积分采样
template<typename Func>
double SurfaceAreaCalculator::GaussIntegrate1D(double a, double b, Func&& func, int q) const {
double sum = 0.0;
for (int i = 0; i < q; ++i) {
double x=a+(b-a)*GaussQuad::x(q, i);
double w=GaussQuad::w(q, i);
sum += w * func(x);
}
return sum * (b-a);
}
// 直线u=u_val与边界的交点 // 直线u=u_val与边界的交点
std::vector<double> SurfaceAreaCalculator::FindVerticalIntersectionsOCCT( std::vector<double> SurfaceAreaCalculator::find_vertical_intersections(double u_val)
double u_val,
const std::vector<Handle(Geom2d_Curve)>& edges,
double v_min,
double v_max)
{ {
std::vector<double> intersections; std::vector<double> intersections;
std::vector<int32_t> uPositionFlags;
// 创建垂直线(u=u_val) uPositionFlags.reserve(m_uv_plane.chain_vertices.size());
gp_Lin2d vertical_line(gp_Pnt2d(u_val, v_min), gp_Dir2d(0, 1));
Handle(Geom2d_Line) hVerticalLine = new Geom2d_Line(vertical_line); std::transform(m_uv_plane.chain_vertices.begin(),
m_uv_plane.chain_vertices.end(),
for (const auto& edge : edges) { std::back_inserter(uPositionFlags),
if (edge.IsNull()) { [&](const auto& currentVertex) {
continue; double uDifference = currentVertex.x() - u_val;
} if (uDifference < 0) return -1; // 在参考值左侧
if (uDifference > 0) return 1; // 在参考值右侧
// 使用Geom2dAPI_InterCurveCurve求交 return 0; // 等于参考值
Geom2dAPI_InterCurveCurve intersector(edge, hVerticalLine); });
if (intersector.NbPoints() > 0) { uint32_t group_idx = 0;
for (int i = 1; i <= intersector.NbPoints(); ++i) { for (uint32_t element_idx = 0; element_idx < m_uv_plane.chains.index_group.size() - 1; element_idx++) {
gp_Pnt2d pt = intersector.Point(i); if (element_idx > m_uv_plane.chains.start_indices[group_idx + 1]) group_idx++;
double v = pt.Y(); if (element_idx + 1 < m_uv_plane.chains.start_indices[group_idx + 1]) {
if (v >= v_min && v <= v_max) { uint32_t vertex_idx1 = m_uv_plane.chains.index_group[element_idx];
intersections.push_back(v); uint32_t vertex_idx2 = m_uv_plane.chains.index_group[element_idx + 1];
if (uPositionFlags[vertex_idx1] * uPositionFlags[vertex_idx2] <= 0) {
auto v1 = m_uv_plane.chain_vertices[vertex_idx1], v2 = m_uv_plane.chain_vertices[vertex_idx2];
if (v1.x() != v2.x()) {
// "The line segment is vertical (u₁ == u₂), so there is no unique v value corresponding to the given u."
double v_initial = v1.y() + (v2.y() - v1.y()) * (u_val - v1.x()) / (v2.x() - v1.x());
auto curve_evaluator = m_surface.fetch_curve_constraint_evaluator(u);
auto solver_evaluator = m_surface.fetch_solver_evaluator();
auto target_function = [&](double v) -> equation_intermediate_t {
constraint_curve_intermediate temp_res = curve_evaluator(v);
return solver_evaluator(std::move(temp_res));
};
double v_solution = newton_method(target_function, v_initial);
intersections.push_back(v_solution);
} else {
intersections.push_back(v1.y());
intersections.push_back(v2.y());
} }
} }
} }
}
// 补充采样法确保可靠性 // 去重排序
Geom2dAdaptor_Curve adaptor(edge); sort_and_unique_with_tol(intersections);
double first = adaptor.FirstParameter(); return intersections;
double last = adaptor.LastParameter(); }
const int samples = 20; /*
gp_Pnt2d prev_p; point (u, v) is inside the domain by ray-casting algorithm
adaptor.D0(first, prev_p); To determine whether a point (u, v) is inside or outside a domain by counting the intersections of a vertical ray starting
double prev_v = prev_p.Y(); from the point and extending upwards,
NOTE: when v_intersect - v < threshold, further checks are required to accurately determine if the intersection point lies
for (int i = 1; i <= samples; ++i) { precisely on the boundary segment.
double param = first + i * (last - first) / samples; */
gp_Pnt2d curr_p; bool is_point_inside_domain(double u, double v)
adaptor.D0(param, curr_p); {
double curr_v = curr_p.Y(); uint32_t group_idx = 0, intersection_count = 0;
for (uint32_t element_idx = 0; element_idx < m_uv_plane.chains.index_group.size() - 1; element_idx++) {
if ((prev_v - u_val) * (curr_v - u_val) <= 0) { if (element_idx > m_uv_plane.chains.start_indices[group_idx + 1]) group_idx++;
// 牛顿迭代法 if (element_idx + 1 < m_uv_plane.chains.start_indices[group_idx + 1]) {
double t = param - (last - first)/samples; uint32_t vertex_idx1 = m_uv_plane.chains.index_group[element_idx];
for (int iter = 0; iter < 5; ++iter) { uint32_t vertex_idx2 = m_uv_plane.chains.index_group[element_idx + 1];
gp_Pnt2d p; auto v1 = m_uv_plane.chain_vertices[vertex_idx1], v2 = m_uv_plane.chain_vertices[vertex_idx2];
gp_Vec2d deriv; if ((v1.x() <= u && v2.x() > u) || (v2.x() < u && v1.x() >= u)) {
adaptor.D1(t, p, deriv);
if (std::abs(p.X() - u_val) < Precision::Confusion()) { double v_intersected = v1.y() + (v2.y() - v1.y()) * (u_val - v1.x()) / (v2.x() - v1.x());
if (p.Y() >= v_min && p.Y() <= v_max) { if (v_interdected - v >= 1e-6) { intersection_count++; }
intersections.push_back(p.Y()); else if (std::abs(v_intersected - v) < 1e-6) {
} auto curve_evaluator = m_surface.fetch_curve_constraint_evaluator(u);
break; auto solver_evaluator = m_surface.fetch_solver_evaluator();
auto target_function = [&](double v) -> equation_intermediate_t {
constraint_curve_intermediate temp_res = curve_evaluator(v);
return solver_evaluator(std::move(temp_res));
};
double v_solution = newton_method(target_function, v_initial);
if (std::abs(v_solution - v) > 0) {
intersection_count++;
} }
t -= (p.X() - u_val) / deriv.X();
} }
} }
prev_v = curr_v; /*
case v1.x() == v2.x() == u, do not count as intersection.but will cout in next iteration
*/
} }
} }
return intersection_count % 2 == 1; // in domain
// 去重排序
std::sort(intersections.begin(), intersections.end());
intersections.erase(std::unique(intersections.begin(), intersections.end()), intersections.end());
return intersections;
} }
// 牛顿法求解器
// Private method: Numerical integration over the UV parameter domain double SurfaceAreaCalculator::newton_method(const std::function<equation_intermediate_t(double)>& F,
double SurfaceAreaCalculator::integrate_over_uv(int num_samples) const double v_initial,
double tolerance,
int max_iterations)
{ {
double area = 0.0; double v = v_initial;
double du = 1.0 / num_samples; for (int i = 0; i < max_iterations; ++i) {
double dv = 1.0 / num_samples; equation_intermediate_t res = F(v);
double f = res.f;
double df = res.df;
// Fetch evaluators for point and derivative calculation if (std::abs(f) < tolerance) {
auto point_func = m_surface.fetch_point_by_param_evaluator(); std::cout << "✅ Converged in " << i + 1 << " iterations. v = " << v << std::endl;
auto solver_func = m_surface.fetch_solver_evaluator(); return v;
}
for (int i = 0; i < num_samples; ++i) { if (std::abs(df) < 1e-10) {
double u = (i + 0.5) * du; // Midpoint sampling in u-direction std::cerr << "⚠️ Derivative near zero. No convergence." << std::endl;
return v;
}
for (int j = 0; j < num_samples; ++j) { v -= f / df;
double v = (j + 0.5) * dv; // Midpoint sampling in v-direction
// Evaluate the surface point at (u, v) std::cout << "Iteration " << i + 1 << ": v = " << v << ", f = " << f << std::endl;
Eigen::Vector4d pt = point_func(Eigen::Vector2d(u, v)); }
// Get constraint and solve intermediate result std::cerr << "❌ Did not converge within " << max_iterations << " iterations." << std::endl;
auto constraint = m_surface.fetch_curve_constraint_evaluator(internal::parameter_v_t{}, v)(u); return v;
auto result = std::get<internal::parametric_equation_intermediate>(solver_func(std::move(constraint))); }
// Extract partial derivatives ∂S/∂u and ∂S/∂v void SurfaceAreaCalculator::sort_and_unique_with_tol(std::vector<double>& vec, double epsilon)
Eigen::Vector3d dSdu = result.grad_f.col(0); {
Eigen::Vector3d dSdv = result.grad_f.col(1); if (vec.empty()) return;
// Compute the differential area element (cross product norm) std::sort(vec.begin(), vec.end());
double dA = dSdu.cross(dSdv).norm();
// Accumulate area using numerical integration size_t write_index = 0;
area += dA * du * dv; for (size_t read_index = 1; read_index < vec.size(); ++read_index) {
if (std::fabs(vec[read_index] - vec[write_index]) > epsilon) {
++write_index;
vec[write_index] = vec[read_index];
} }
} }
return area; vec.resize(write_index + 1);
} }
} // namespace internal } // namespace internal
Loading…
Cancel
Save