extract explicit mesh with topology information from implicit surfaces with boolean operations, and do surface/volume integrating on them.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

921 lines
34 KiB

#include "internal_api.hpp"
#include "primitive_descriptor.h"
#include <iostream>
#include <stack>
#include <vector>
/* internal global variables for blobtree */
typedef struct _node_t {
uint64_t data[2];
constexpr _node_t() : data{0, 0} {}
constexpr _node_t(const uint64_t n1, const uint64_t n2) : data{n1, n2} {}
template <typename T, typename = std::enable_if_t<sizeof(T) <= sizeof(uint64_t)>>
constexpr _node_t(T value)
{
data[0] = 0;
data[1] = static_cast<uint64_t>(value);
}
template <typename T, typename = std::enable_if_t<sizeof(T) <= sizeof(uint64_t)>>
constexpr operator T() const
{
return static_cast<T>(data[1]);
}
_node_t operator>>(const uint32_t shift) const
{
if (shift == 0) { return *this; }
_node_t result = *this;
if (shift >= 128) {
result.data[0] = 0;
result.data[1] = 0;
} else if (shift >= 64) {
result.data[1] = this->data[0] >> (shift - 64);
result.data[0] = 0;
} else {
result.data[1] = (this->data[1] >> shift) | (this->data[0] << (64 - shift));
result.data[0] = this->data[0] >> shift;
}
return result;
}
_node_t operator<<(const uint32_t shift) const
{
if (shift == 0) { return *this; }
_node_t result = *this;
if (shift >= 128) {
result.data[0] = 0;
result.data[1] = 0;
} else if (shift >= 64) {
result.data[0] = this->data[1] << (shift - 64);
result.data[1] = 0;
} else {
result.data[0] = (this->data[0] << shift) | (this->data[1] >> (64 - shift));
result.data[1] = this->data[1] << shift;
}
return result;
}
const _node_t operator&(const _node_t& other) const
{
_node_t result = *this;
result.data[0] &= other.data[0];
result.data[1] &= other.data[1];
return result;
}
const _node_t operator&(const uint32_t other) const
{
_node_t result = *this;
result.data[1] &= other;
return result;
}
const _node_t operator|(const _node_t& other) const
{
_node_t result = *this;
result.data[0] |= other.data[0];
result.data[1] |= other.data[1];
return result;
}
const _node_t operator|(const uint32_t other) const
{
_node_t result = *this;
result.data[1] |= other;
return result;
}
const _node_t operator~() const
{
_node_t result = *this;
result.data[0] = ~result.data[0];
result.data[1] = ~result.data[1];
return result;
}
} node_t;
typedef struct blobtree_t {
std::vector<node_t, tbb::tbb_allocator<node_t>> nodes{};
std::vector<uint32_t, tbb::tbb_allocator<uint32_t>> leaf_index{};
};
std::vector<blobtree_t, tbb::tbb_allocator<blobtree_t>> structures{};
std::vector<primitive_node_t, tbb::tbb_allocator<primitive_node_t>> primitives{};
std::stack<uint32_t, std::deque<uint32_t, tbb::tbb_allocator<uint32_t>>> free_structure_list{};
/* getter/setter for node_t */
template <typename _Tp>
struct node_proxy {
constexpr node_proxy(node_t& _data, uint32_t _offset, node_t _mask) : data(&_data), offset(_offset), mask(_mask) {}
node_proxy(const node_proxy&) = delete;
node_proxy(node_proxy&&) = delete;
constexpr node_proxy& operator=(const node_proxy& other)
{
const auto _mask = mask << offset;
*data = (*data & ~_mask) | (other.data & _mask);
return *this;
}
constexpr node_proxy& operator=(node_proxy&& other)
{
const auto _mask = mask << offset;
*data = (*data & ~_mask) | (std::forward(other.data) & _mask);
return *this;
}
template <typename _Fp>
constexpr node_proxy& operator=(_Fp&& other)
{
const auto _mask = mask << offset;
*data = (*data & ~_mask) | (std::forward<_Fp>(other) & _mask);
return *this;
}
constexpr operator _Tp() const { return static_cast<_Tp>(((*data) >> offset) & mask); }
protected:
node_t* data;
uint32_t offset{};
node_t mask{};
};
#define NODE_LOCATION_IN 0
#define NODE_LOCATION_OUT 1
#define NODE_LOCATION_EDGE 2
#define NODE_LOCATION_UNSET 3
#define OP_UNION 0
#define OP_INTERSECTION 1
#define OP_DIFFERENCE 2
#define OP_UNSET 3
// 0 for internal node, 1 for primitive node
static constexpr inline auto node_fetch_is_primitive(node_t& node) { return node_proxy<bool>(node, 127u, 0x01u); }
// 0 for union, 1 for intersection, 2 for difference, 3 for unset
static constexpr inline auto node_fetch_operation(node_t& node) { return node_proxy<uint32_t>(node, 125u, 0x03u); }
// 0 for in, 1 for out, 2 for on edge, 3 for unset
static constexpr inline auto node_fetch_in_out(node_t& node) { return node_proxy<uint32_t>(node, 123u, 0x03u); }
// If primitive node, the index to the primitive information
static constexpr inline auto node_fetch_primitive_index(node_t& node) { return node_proxy<uint32_t>(node, 96u, 0xFFFFFFu); }
// Parent node index
static constexpr inline auto node_fetch_parent_index(node_t& node) { return node_proxy<uint32_t>(node, 64u, 0xFFFFFFFFu); }
// Left child node index
static constexpr inline auto node_fetch_left_child_index(node_t& node) { return node_proxy<uint32_t>(node, 32u, 0xFFFFFFFFu); }
// Right child node index
static constexpr inline auto node_fetch_right_child_index(node_t& node) { return node_proxy<uint32_t>(node, 0u, 0xFFFFFFFFu); }
/* basic functionalities */
BPE_API std::vector<primitive_node_t, tbb::tbb_allocator<primitive_node_t>>& get_primitives() { return primitives; }
void shrink_primitives() { primitives.shrink_to_fit(); }
bool is_primitive_node(node_t& node) { return node_fetch_is_primitive(node) == 1; }
bool is_parent_null(node_t& node) { return node_fetch_parent_index(node) == 0xFFFFFFFFu; }
bool is_left_null(node_t& node) { return node_fetch_left_child_index(node) == 0xFFFFFFFFu; }
bool is_right_null(node_t& node) { return node_fetch_right_child_index(node) == 0xFFFFFFFFu; }
void set_is_primitive(node_t& node, const bool flag)
{
node_t temp;
temp.data[0] = flag;
temp.data[0] = temp.data[0] << 63;
node_fetch_is_primitive(node) = temp;
}
void set_operation(node_t& node, const uint32_t op)
{
node_t temp;
temp.data[0] = op;
temp.data[0] = temp.data[0] << 61;
node_fetch_operation(node) = temp;
}
void set_in_out(node_t& node, const uint32_t in_out)
{
node_t temp;
temp.data[0] = in_out;
temp.data[0] = temp.data[0] << 59;
node_fetch_in_out(node) = temp;
}
void set_primitive_index(node_t& node, const uint32_t index)
{
node_t temp;
temp.data[0] = index;
temp.data[0] = temp.data[0] << 32;
node_fetch_primitive_index(node) = temp;
}
void set_parent_index(node_t& node, const uint32_t index)
{
node_t temp;
temp.data[0] = index;
node_fetch_parent_index(node) = temp;
}
void set_left_child_index(node_t& node, const uint32_t index)
{
node_t temp;
temp.data[1] = index;
temp.data[1] = temp.data[1] << 32;
node_fetch_left_child_index(node) = temp;
}
void set_right_child_index(node_t& node, const uint32_t index)
{
node_t temp;
temp.data[1] = index;
node_fetch_right_child_index(node) = temp;
}
virtual_node_t copy(virtual_node_t old_node, virtual_node_t new_node)
{
assert(old_node.main_index != new_node.main_index);
// Copy a tree and its subtrees to a temporary tree
auto temp = structures[old_node.main_index];
// Update all index
int size = structures[new_node.main_index].nodes.size();
for (int i = 0; i < temp.nodes.size(); i++) {
if (!is_parent_null(temp.nodes[i])) { set_parent_index(temp.nodes[i], node_fetch_parent_index(temp.nodes[i]) + size); }
if (!is_left_null(temp.nodes[i])) {
set_left_child_index(temp.nodes[i], node_fetch_left_child_index(temp.nodes[i]) + size);
}
if (!is_right_null(temp.nodes[i])) {
set_right_child_index(temp.nodes[i], node_fetch_right_child_index(temp.nodes[i]) + size);
}
}
for (int i = 0; i < temp.leaf_index.size(); i++) { temp.leaf_index[i] += size; }
// Copy the updated index tree to the array at the new location
structures[new_node.main_index].nodes.insert(structures[new_node.main_index].nodes.end(),
temp.nodes.begin(),
temp.nodes.end());
structures[new_node.main_index].leaf_index.insert(structures[new_node.main_index].leaf_index.end(),
temp.leaf_index.begin(),
temp.leaf_index.end());
return virtual_node_t{new_node.main_index, old_node.inner_index + size};
}
void offset_primitive(primitive_node_t node, const raw_vector3d_t& offset)
{
auto offset_point = [](raw_vector3d_t* point, const raw_vector3d_t& offset) {
point->x += offset.x;
point->y += offset.y;
point->z += offset.z;
};
auto type = node.type;
switch (type) {
case PRIMITIVE_TYPE_CONSTANT: {
break;
}
case PRIMITIVE_TYPE_PLANE: {
auto desc = static_cast<plane_descriptor_t*>(node.desc);
offset_point(&desc->point, offset);
break;
}
case PRIMITIVE_TYPE_SPHERE: {
auto desc = static_cast<sphere_descriptor_t*>(node.desc);
offset_point(&desc->center, offset);
break;
}
case PRIMITIVE_TYPE_CYLINDER: {
auto desc = static_cast<cylinder_descriptor_t*>(node.desc);
offset_point(&desc->bottom_origion, offset);
break;
}
case PRIMITIVE_TYPE_CONE: {
auto desc = static_cast<cone_descriptor_t*>(node.desc);
offset_point(&desc->top_point, offset);
offset_point(&desc->bottom_point, offset);
break;
}
case PRIMITIVE_TYPE_BOX: {
auto desc = static_cast<box_descriptor_t*>(node.desc);
offset_point(&desc->center, offset);
break;
}
case PRIMITIVE_TYPE_MESH: {
auto desc = static_cast<mesh_descriptor_t*>(node.desc);
for (int i = 0; i < desc->point_number; i++) { offset_point(&desc->points[i], offset); }
break;
}
case PRIMITIVE_TYPE_EXTRUDE: {
auto desc = static_cast<extrude_descriptor_t*>(node.desc);
for (int i = 0; i < desc->edges_number; i++) { offset_point(&desc->points[i], offset); }
break;
}
default: {
break;
}
}
}
void free_sub_blobtree(uint32_t index)
{
// 这里尽量打标记,延迟修改和删除
free_structure_list.push(index);
}
bool upward_propagation(blobtree_t& tree, const int leaf_node_index, const int root_index)
{
int now_index = leaf_node_index;
now_index = node_fetch_parent_index(tree.nodes[now_index]);
while (true) {
auto& node = tree.nodes[now_index];
auto& left_child = tree.nodes[node_fetch_left_child_index(node)];
auto& right_child = tree.nodes[node_fetch_right_child_index(node)];
if (node_fetch_in_out(node) != NODE_LOCATION_UNSET) { return false; }
switch (node_fetch_operation(node)) {
case OP_UNION: {
if (node_fetch_in_out(left_child) == NODE_LOCATION_IN || node_fetch_in_out(right_child) == NODE_LOCATION_IN) {
set_in_out(node, NODE_LOCATION_IN);
} else if (node_fetch_in_out(left_child) == NODE_LOCATION_OUT
&& node_fetch_in_out(right_child) == NODE_LOCATION_OUT) {
set_in_out(node, NODE_LOCATION_OUT);
} else {
return false;
}
break;
}
case OP_INTERSECTION: {
if (node_fetch_in_out(left_child) == NODE_LOCATION_IN && node_fetch_in_out(right_child) == NODE_LOCATION_IN) {
set_in_out(node, NODE_LOCATION_IN);
} else if (node_fetch_in_out(left_child) == NODE_LOCATION_OUT
|| node_fetch_in_out(right_child) == NODE_LOCATION_OUT) {
set_in_out(node, NODE_LOCATION_OUT);
} else {
return false;
}
break;
}
case OP_DIFFERENCE: {
if (node_fetch_in_out(left_child) == NODE_LOCATION_IN && node_fetch_in_out(right_child) == NODE_LOCATION_OUT) {
set_in_out(node, NODE_LOCATION_IN);
}
if (node_fetch_in_out(left_child) == NODE_LOCATION_OUT || node_fetch_in_out(right_child) == NODE_LOCATION_IN) {
set_in_out(node, NODE_LOCATION_OUT);
} else {
return false;
}
break;
}
default: {
return false;
break;
}
}
if (now_index == root_index) { return true; }
now_index = node_fetch_parent_index(node);
}
}
int evaluate(const virtual_node_t& node, const raw_vector3d_t& point)
{
auto temp = structures[node.main_index];
auto& leaf_index = temp.leaf_index;
for (int i = 0; i < leaf_index.size(); i++) {
auto sdf = evaluate(primitives[leaf_index[i]], point);
if (sdf <= 0.0) {
set_in_out(temp.nodes[leaf_index[i]], NODE_LOCATION_IN);
} else {
set_in_out(temp.nodes[leaf_index[i]], NODE_LOCATION_OUT);
}
if (upward_propagation(temp, leaf_index[i], node.inner_index)) { break; }
}
return node_fetch_in_out(temp.nodes[node.inner_index]);
}
/* Geometry Generation */
static constexpr node_t standard_new_node = {(uint64_t)0xFFFFFFFFFFFFFFFFu, (uint64_t)0xFFFFFFFFFFFFFFFFu};
virtual_node_t push_primitive_node(primitive_node_t&& primitive_node)
{
primitives.emplace_back(primitive_node);
node_t node = standard_new_node;
set_primitive_index(node, static_cast<uint32_t>(primitives.size() - 1));
blobtree_t tree;
tree.nodes.emplace_back(node);
tree.leaf_index.push_back(0);
structures.push_back(tree);
return virtual_node_t{static_cast<uint32_t>(structures.size() - 1), 0};
}
BPE_API virtual_node_t blobtree_new_virtual_node(const constant_descriptor_t& desc)
{
primitive_node_t node{PRIMITIVE_TYPE_CONSTANT, malloc(sizeof(constant_descriptor_t))};
*((constant_descriptor_t*)node.desc) = std::move(desc);
return push_primitive_node(std::move(node));
}
BPE_API virtual_node_t blobtree_new_virtual_node(const plane_descriptor_t& desc)
{
primitive_node_t node{PRIMITIVE_TYPE_PLANE, malloc(sizeof(plane_descriptor_t))};
*((plane_descriptor_t*)node.desc) = std::move(desc);
return push_primitive_node(std::move(node));
}
BPE_API virtual_node_t blobtree_new_virtual_node(const sphere_descriptor_t& desc)
{
primitive_node_t node{PRIMITIVE_TYPE_SPHERE, malloc(sizeof(sphere_descriptor_t))};
*((sphere_descriptor_t*)node.desc) = std::move(desc);
return push_primitive_node(std::move(node));
}
BPE_API virtual_node_t blobtree_new_virtual_node(const cylinder_descriptor_t& desc)
{
primitive_node_t node{PRIMITIVE_TYPE_CYLINDER, malloc(sizeof(cylinder_descriptor_t))};
*((cylinder_descriptor_t*)node.desc) = std::move(desc);
return push_primitive_node(std::move(node));
}
BPE_API virtual_node_t blobtree_new_virtual_node(const cone_descriptor_t& desc)
{
primitive_node_t node{PRIMITIVE_TYPE_CONE, malloc(sizeof(cone_descriptor_t))};
*((cone_descriptor_t*)node.desc) = std::move(desc);
return push_primitive_node(std::move(node));
}
BPE_API virtual_node_t blobtree_new_virtual_node(const box_descriptor_t& desc)
{
primitive_node_t node{PRIMITIVE_TYPE_BOX, malloc(sizeof(box_descriptor_t))};
*((box_descriptor_t*)node.desc) = std::move(desc);
return push_primitive_node(std::move(node));
}
BPE_API virtual_node_t blobtree_new_virtual_node(const mesh_descriptor_t& desc)
{
primitive_node_t node{PRIMITIVE_TYPE_MESH, malloc(sizeof(mesh_descriptor_t))};
*((mesh_descriptor_t*)node.desc) = std::move(desc);
return push_primitive_node(std::move(node));
}
BPE_API virtual_node_t blobtree_new_virtual_node(const extrude_descriptor_t& desc)
{
primitive_node_t node{PRIMITIVE_TYPE_EXTRUDE, malloc(sizeof(extrude_descriptor_t))};
*((extrude_descriptor_t*)node.desc) = std::move(desc);
return push_primitive_node(std::move(node));
}
BPE_API void blobtree_free_virtual_node(virtual_node_t* node) { free_sub_blobtree(node->main_index); }
/* Geometry Operations */
BPE_API void virtual_node_boolean_union(virtual_node_t* node1, virtual_node_t* node2)
{
auto new_node2 = copy(*node2, *node1);
node_t temp = standard_new_node;
set_is_primitive(temp, false);
set_operation(temp, 0);
set_left_child_index(temp, node1->inner_index);
set_right_child_index(temp, new_node2.inner_index);
structures[node1->main_index].nodes.push_back(temp);
uint32_t parent_index = structures[node1->main_index].nodes.size() - 1;
set_parent_index(structures[node1->main_index].nodes[node1->inner_index], parent_index);
set_parent_index(structures[new_node2.main_index].nodes[new_node2.inner_index], parent_index);
node1->inner_index = parent_index;
}
BPE_API void virtual_node_boolean_intersect(virtual_node_t* node1, virtual_node_t* node2)
{
auto new_node2 = copy(*node2, *node1);
node_t temp = standard_new_node;
set_is_primitive(temp, false);
set_operation(temp, 1);
set_left_child_index(temp, node1->inner_index);
set_right_child_index(temp, new_node2.inner_index);
structures[node1->main_index].nodes.push_back(temp);
uint32_t parent_index = structures[node1->main_index].nodes.size() - 1;
set_parent_index(structures[node1->main_index].nodes[node1->inner_index], parent_index);
set_parent_index(structures[new_node2.main_index].nodes[new_node2.inner_index], parent_index);
node1->inner_index = parent_index;
}
BPE_API void virtual_node_boolean_difference(virtual_node_t* node1, virtual_node_t* node2)
{
auto new_node2 = copy(*node2, *node1);
node_t temp = standard_new_node;
set_is_primitive(temp, false);
set_operation(temp, 2);
set_left_child_index(temp, node1->inner_index);
set_right_child_index(temp, new_node2.inner_index);
structures[node1->main_index].nodes.push_back(temp);
uint32_t parent_index = structures[node1->main_index].nodes.size() - 1;
set_parent_index(structures[node1->main_index].nodes[node1->inner_index], parent_index);
set_parent_index(structures[new_node2.main_index].nodes[new_node2.inner_index], parent_index);
node1->inner_index = parent_index;
}
BPE_API void virtual_node_offset(virtual_node_t* node, const raw_vector3d_t& direction, const double length)
{
raw_vector3d_t offset = {direction.x * length, direction.y * length, direction.z * length};
virtual_node_offset(node, offset);
}
BPE_API void virtual_node_offset(virtual_node_t* node, const raw_vector3d_t& offset)
{
auto& all_leaf = structures[node->main_index].leaf_index;
for (int i = 0; i < all_leaf.size(); i++) {
offset_primitive(primitives[node_fetch_primitive_index(structures[node->main_index].nodes[all_leaf[i]])], offset);
}
}
BPE_API void virtual_node_split(virtual_node_t* node, raw_vector3d_t base_point, raw_vector3d_t normal)
{
plane_descriptor_t descriptor;
descriptor.normal = raw_vector3d_t{normal.x * -1, normal.y * -1, normal.z * -1};
descriptor.point = base_point;
auto plane = blobtree_new_virtual_node(descriptor);
virtual_node_boolean_intersect(node, &plane);
}
/* Tree Node Operations */
BPE_API bool virtual_node_set_parent(virtual_node_t* node, virtual_node_t* parent)
{
// The node's parent is not empty
if (!is_parent_null(structures[node->main_index].nodes[node->inner_index])) { return false; }
// The parent's left child is empty
if (is_left_null(structures[parent->main_index].nodes[parent->inner_index])) {
// On the same tree
if (node->main_index == parent->main_index) {
set_parent_index(structures[node->main_index].nodes[node->inner_index], parent->inner_index);
set_left_child_index(structures[parent->main_index].nodes[parent->inner_index], node->inner_index);
} else {
auto new_parent = copy(*parent, *node);
set_parent_index(structures[node->main_index].nodes[node->inner_index], new_parent.inner_index);
set_left_child_index(structures[new_parent.main_index].nodes[new_parent.inner_index], node->inner_index);
}
}
// The parent's right child is empty
else if (is_right_null(structures[parent->main_index].nodes[parent->inner_index])) {
// On the same tree
if (node->main_index == parent->main_index) {
set_parent_index(structures[node->main_index].nodes[node->inner_index], parent->inner_index);
set_right_child_index(structures[parent->main_index].nodes[parent->inner_index], node->inner_index);
} else {
auto new_parent = copy(*parent, *node);
set_parent_index(structures[node->main_index].nodes[node->inner_index], new_parent.inner_index);
set_right_child_index(structures[new_parent.main_index].nodes[new_parent.inner_index], node->inner_index);
}
} else {
return false;
}
}
BPE_API bool virtual_node_set_left_child(virtual_node_t* node, virtual_node_t* child)
{
// The child's parent is not empty
if (!is_parent_null(structures[child->main_index].nodes[child->inner_index])) { return false; }
// The node's left child is not empty
if (!is_left_null(structures[node->main_index].nodes[node->inner_index])) { return false; }
// On the same tree
if (node->main_index == child->main_index) {
set_parent_index(structures[child->main_index].nodes[child->inner_index], node->inner_index);
set_left_child_index(structures[node->main_index].nodes[node->inner_index], child->inner_index);
} else {
auto new_child = copy(*child, *node);
set_parent_index(structures[new_child.main_index].nodes[new_child.inner_index], node->inner_index);
set_left_child_index(structures[node->main_index].nodes[node->inner_index], new_child.inner_index);
}
}
BPE_API bool virtual_node_set_right_child(virtual_node_t* node, virtual_node_t* child)
{
// The child's parent is not empty
if (!is_parent_null(structures[child->main_index].nodes[child->inner_index])) { return false; }
// The node's right child is not empty
if (!is_right_null(structures[node->main_index].nodes[node->inner_index])) { return false; }
// On the same tree
if (node->main_index == child->main_index) {
set_parent_index(structures[child->main_index].nodes[child->inner_index], node->inner_index);
set_right_child_index(structures[node->main_index].nodes[node->inner_index], child->inner_index);
} else {
auto new_child = copy(*child, *node);
set_parent_index(structures[new_child.main_index].nodes[new_child.inner_index], node->inner_index);
set_right_child_index(structures[node->main_index].nodes[node->inner_index], new_child.inner_index);
}
}
BPE_API bool virtual_node_add_child(virtual_node_t* node, virtual_node_t* child)
{
if (virtual_node_set_left_child(node, child)) {
return true;
} else if (virtual_node_set_right_child(node, child)) {
return true;
} else {
return false;
}
}
BPE_API bool virtual_node_remove_child(virtual_node_t* node, virtual_node_t* child)
{
if (node->main_index != child->main_index) { return false; }
if (node_fetch_left_child_index(structures[node->main_index].nodes[node->inner_index]) == child->inner_index) {
set_left_child_index(structures[node->main_index].nodes[node->inner_index], 0xFFFFFFFFu);
blobtree_free_virtual_node(child);
return true;
} else if (node_fetch_right_child_index(structures[node->main_index].nodes[node->inner_index]) == child->inner_index) {
set_right_child_index(structures[node->main_index].nodes[node->inner_index], 0xFFFFFFFFu);
blobtree_free_virtual_node(child);
return true;
} else {
return false;
}
}
/* Node Replacement Operation */
BPE_API bool virtual_node_replace_primitive(virtual_node_t* node, const constant_descriptor_t& desc)
{
if (!is_primitive_node(structures[node->main_index].nodes[node->inner_index])) { return false; }
*((constant_descriptor_t*)primitives[node_fetch_primitive_index(structures[node->main_index].nodes[node->inner_index])]
.desc) = std::move(desc);
primitives[node_fetch_primitive_index(structures[node->main_index].nodes[node->inner_index])].type =
PRIMITIVE_TYPE_CONSTANT;
return true;
}
BPE_API bool virtual_node_replace_primitive(virtual_node_t* node, const plane_descriptor_t& desc)
{
if (!is_primitive_node(structures[node->main_index].nodes[node->inner_index])) { return false; }
*((plane_descriptor_t*)primitives[node_fetch_primitive_index(structures[node->main_index].nodes[node->inner_index])].desc) =
std::move(desc);
primitives[node_fetch_primitive_index(structures[node->main_index].nodes[node->inner_index])].type = PRIMITIVE_TYPE_PLANE;
return true;
}
BPE_API bool virtual_node_replace_primitive(virtual_node_t* node, const sphere_descriptor_t& desc)
{
if (!is_primitive_node(structures[node->main_index].nodes[node->inner_index])) { return false; }
*((sphere_descriptor_t*)primitives[node_fetch_primitive_index(structures[node->main_index].nodes[node->inner_index])]
.desc) = std::move(desc);
primitives[node_fetch_primitive_index(structures[node->main_index].nodes[node->inner_index])].type = PRIMITIVE_TYPE_SPHERE;
return true;
}
BPE_API bool virtual_node_replace_primitive(virtual_node_t* node, const cylinder_descriptor_t& desc)
{
if (!is_primitive_node(structures[node->main_index].nodes[node->inner_index])) { return false; }
*((cylinder_descriptor_t*)primitives[node_fetch_primitive_index(structures[node->main_index].nodes[node->inner_index])]
.desc) = std::move(desc);
primitives[node_fetch_primitive_index(structures[node->main_index].nodes[node->inner_index])].type =
PRIMITIVE_TYPE_CYLINDER;
return true;
}
BPE_API bool virtual_node_replace_primitive(virtual_node_t* node, const cone_descriptor_t& desc)
{
if (!is_primitive_node(structures[node->main_index].nodes[node->inner_index])) { return false; }
*((cone_descriptor_t*)primitives[node_fetch_primitive_index(structures[node->main_index].nodes[node->inner_index])].desc) =
std::move(desc);
primitives[node_fetch_primitive_index(structures[node->main_index].nodes[node->inner_index])].type = PRIMITIVE_TYPE_CONE;
return true;
}
BPE_API bool virtual_node_replace_primitive(virtual_node_t* node, const box_descriptor_t& desc)
{
if (!is_primitive_node(structures[node->main_index].nodes[node->inner_index])) { return false; }
*((box_descriptor_t*)primitives[node_fetch_primitive_index(structures[node->main_index].nodes[node->inner_index])].desc) =
std::move(desc);
primitives[node_fetch_primitive_index(structures[node->main_index].nodes[node->inner_index])].type = PRIMITIVE_TYPE_BOX;
return true;
}
BPE_API bool virtual_node_replace_primitive(virtual_node_t* node, const mesh_descriptor_t& desc)
{
if (!is_primitive_node(structures[node->main_index].nodes[node->inner_index])) { return false; }
*((mesh_descriptor_t*)primitives[node_fetch_primitive_index(structures[node->main_index].nodes[node->inner_index])].desc) =
std::move(desc);
primitives[node_fetch_primitive_index(structures[node->main_index].nodes[node->inner_index])].type = PRIMITIVE_TYPE_MESH;
return true;
}
BPE_API bool virtual_node_replace_primitive(virtual_node_t* node, const extrude_descriptor_t& desc)
{
if (!is_primitive_node(structures[node->main_index].nodes[node->inner_index])) { return false; }
*((extrude_descriptor_t*)primitives[node_fetch_primitive_index(structures[node->main_index].nodes[node->inner_index])]
.desc) = std::move(desc);
primitives[node_fetch_primitive_index(structures[node->main_index].nodes[node->inner_index])].type = PRIMITIVE_TYPE_EXTRUDE;
return true;
}
#ifdef _DEBUG
void output_primitive_node(const primitive_node_t& node)
{
auto output_point = [](const raw_vector3d_t& point) {
std::cout << "( " << point.x << ", " << point.y << ", " << point.z << " )" << std::endl;
};
auto type = node.type;
switch (type) {
case PRIMITIVE_TYPE_CONSTANT: {
auto desc = static_cast<constant_descriptor_t*>(node.desc);
std::cout << "constant:" << std::endl;
std::cout << "\tvalue: " << desc->value << std::endl << std::endl;
break;
}
case PRIMITIVE_TYPE_PLANE: {
auto desc = static_cast<plane_descriptor_t*>(node.desc);
std::cout << "plane:" << std::endl;
std::cout << "\tbase point: ";
output_point(desc->point);
std::cout << "\tnormal: ";
output_point(desc->normal);
std::cout << std::endl;
break;
}
case PRIMITIVE_TYPE_SPHERE: {
auto desc = static_cast<sphere_descriptor_t*>(node.desc);
std::cout << "sphere:" << std::endl;
std::cout << "\tcenter: ";
output_point(desc->center);
std::cout << "\tradius: " << desc->radius << std::endl << std::endl;
break;
}
case PRIMITIVE_TYPE_CYLINDER: {
auto desc = static_cast<cylinder_descriptor_t*>(node.desc);
std::cout << "cylinder:" << std::endl;
std::cout << "\tbottom point: ";
output_point(desc->bottom_origion);
std::cout << "\tradius: " << desc->radius << std::endl << std::endl;
std::cout << "\toffset: ";
output_point(desc->offset);
break;
}
case PRIMITIVE_TYPE_CONE: {
auto desc = static_cast<cone_descriptor_t*>(node.desc);
std::cout << "cone:" << std::endl;
std::cout << "\tbottom point: ";
output_point(desc->bottom_point);
std::cout << "\ttop point: ";
output_point(desc->top_point);
std::cout << "\tradius1: " << desc->radius1 << std::endl;
std::cout << "\tradius2: " << desc->radius2 << std::endl << std::endl;
break;
}
case PRIMITIVE_TYPE_BOX: {
auto desc = static_cast<box_descriptor_t*>(node.desc);
std::cout << "box:" << std::endl;
std::cout << "\tcenter: ";
output_point(desc->center);
std::cout << "\thalf_size ";
output_point(desc->half_size);
break;
}
case PRIMITIVE_TYPE_MESH: {
auto desc = static_cast<mesh_descriptor_t*>(node.desc);
std::cout << "mesh:" << std::endl;
std::cout << "\tpoint number: " << desc->point_number << std::endl;
for (int i = 0; i < desc->point_number; i++) {
std::cout << "\t\t( " << desc->points[i].x << ", " << desc->points[i].y << ", " << desc->points[i].z << " )"
<< std::endl;
}
std::cout << "\tfaces number: " << desc->face_number << std::endl;
for (int i = 0; i < desc->face_number; i++) {
auto begin = desc->faces[i][0];
auto length = desc->faces[i][1];
std::cout << "\t\t<" << begin << ", " << length << "> : ";
for (int j = begin; j < begin + length; j++) { std::cout << desc->indexs[j] << " "; }
std::cout << std::endl;
}
break;
}
case PRIMITIVE_TYPE_EXTRUDE: {
auto desc = static_cast<extrude_descriptor_t*>(node.desc);
std::cout << "extrude:" << std::endl;
std::cout << "\tedges number: " << desc->edges_number << std::endl;
std::cout << "\textusion: ";
output_point(desc->extusion);
std::cout << "\tpoints: " << std::endl;
for (int i = 0; i < desc->edges_number; i++) {
std::cout << "\t\t( " << desc->points[i].x << ", " << desc->points[i].y << ", " << desc->points[i].z << " )"
<< std::endl;
}
std::cout << "\tbulges: " << std::endl;
for (int i = 0; i < desc->edges_number; i++) { std::cout << "\t\t" << desc->bulges[i] << std::endl; }
break;
}
default: {
break;
}
}
}
void output_blobtree(virtual_node_t node)
{
std::map<int, std::string> index;
index[0] = "constant";
index[1] = "plane";
index[2] = "sphere";
index[3] = "cylinder";
index[4] = "cone";
index[5] = "box";
index[6] = "mesh";
index[7] = "extrude";
auto root = structures[node.main_index].nodes[node.inner_index];
std::queue<node_t> now, next;
now.push(root);
std::vector<primitive_node_t> temp;
while (!now.empty()) {
auto begin = now.front();
now.pop();
if (is_primitive_node(begin)) {
std::cout << index[primitives[node_fetch_primitive_index(begin)].type] << "\t\t";
temp.push_back(primitives[node_fetch_primitive_index(begin)]);
} else {
auto op = (uint32_t)node_fetch_operation(begin);
if (op == 0) {
std::cout << "or"
<< "\t\t";
} else if (op == 1) {
std::cout << "and"
<< "\t\t";
} else if (op == 2) {
std::cout << "sub"
<< "\t\t";
}
}
if (!is_left_null(begin)) { next.push(structures[node.main_index].nodes[node_fetch_left_child_index(begin)]); }
if (!is_right_null(begin)) { next.push(structures[node.main_index].nodes[node_fetch_right_child_index(begin)]); }
if (now.empty()) {
now = next;
while (!next.empty()) { next.pop(); }
std::cout << std::endl;
}
}
std::cout << std::endl;
for (int i = 0; i < temp.size(); i++) { output_primitive_node(temp[i]); }
}
#endif // _DEBUG