Browse Source

上传文件至 'Top99Code'

top99:a 99 line topology optimization code by Ole Sigmund,October 1999
top88:AN 88 LINE TOPOLOGY OPTIMIZATION CODE Nov, 2010
master
Wxwei 1 year ago
parent
commit
17f93a9f8f
  1. 114
      Top99Code/top88.m
  2. 117
      Top99Code/top99.m

114
Top99Code/top88.m

@ -0,0 +1,114 @@
%%%% AN 88 LINE TOPOLOGY OPTIMIZATION CODE Nov, 2010 %%%%
function top88(nelx,nely,volfrac,penal,rmin,ft)
%% MATERIAL PROPERTIES
E0 = 1;
Emin = 1e-9;
nu = 0.3;
%% PREPARE FINITE ELEMENT ANALYSIS
A11 = [12 3 -6 -3; 3 12 3 0; -6 3 12 -3; -3 0 -3 12];
A12 = [-6 -3 0 3; -3 -6 -3 -6; 0 -3 -6 3; 3 -6 3 -6];
B11 = [-4 3 -2 9; 3 -4 -9 4; -2 -9 -4 -3; 9 4 -3 -4];
B12 = [ 2 -3 4 -9; -3 2 9 -2; 4 9 2 3; -9 -2 3 2];
KE = 1/(1-nu^2)/24*([A11 A12;A12' A11]+nu*[B11 B12;B12' B11]);
nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);
iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
F = sparse(2,1,-1,2*(nely+1)*(nelx+1),1);
U = zeros(2*(nely+1)*(nelx+1),1);
fixeddofs = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]);
alldofs = [1:2*(nely+1)*(nelx+1)];
freedofs = setdiff(alldofs,fixeddofs);
%% PREPARE FILTER
iH = ones(nelx*nely*(2*(ceil(rmin)-1)+1)^2,1);
jH = ones(size(iH));
sH = zeros(size(iH));
k = 0;
for i1 = 1:nelx
for j1 = 1:nely
e1 = (i1-1)*nely+j1;
for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
e2 = (i2-1)*nely+j2;
k = k+1;
iH(k) = e1;
jH(k) = e2;
sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2));
end
end
end
end
H = sparse(iH,jH,sH);
Hs = sum(H,2);
%% INITIALIZE ITERATION
x = repmat(volfrac,nely,nelx);
xPhys = x;
loop = 0;
change = 1;
%% START ITERATION
while change > 0.01
loop = loop + 1;
%% FE-ANALYSIS
sK = reshape(KE(:)*(Emin+xPhys(:)'.^penal*(E0-Emin)),64*nelx*nely,1);
K = sparse(iK,jK,sK); K = (K+K')/2;
U(freedofs) = K(freedofs,freedofs)\F(freedofs);
%% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
ce = reshape(sum((U(edofMat)*KE).*U(edofMat),2),nely,nelx);
c = sum(sum((Emin+xPhys.^penal*(E0-Emin)).*ce));
dc = -penal*(E0-Emin)*xPhys.^(penal-1).*ce;
dv = ones(nely,nelx);
%% FILTERING/MODIFICATION OF SENSITIVITIES
if ft == 1
dc(:) = H*(x(:).*dc(:))./Hs./max(1e-3,x(:));
elseif ft == 2
dc(:) = H*(dc(:)./Hs);
dv(:) = H*(dv(:)./Hs);
end
%% OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES AND PHYSICAL DENSITIES
l1 = 0; l2 = 1e9; move = 0.2;
while (l2-l1)/(l1+l2) > 1e-3
lmid = 0.5*(l2+l1);
xnew = max(0,max(x-move,min(1,min(x+move,x.*sqrt(-dc./dv/lmid)))));
if ft == 1
xPhys = xnew;
elseif ft == 2
xPhys(:) = (H*xnew(:))./Hs;
end
if sum(xPhys(:)) > volfrac*nelx*nely, l1 = lmid; else l2 = lmid; end
end
change = max(abs(xnew(:)-x(:)));
x = xnew;
%% PRINT RESULTS
fprintf(' It.:%5i Obj.:%11.4f Vol.:%7.3f ch.:%7.3f\n',loop,c, ...
mean(xPhys(:)),change);
%% PLOT DENSITIES
colormap(gray); imagesc(1-xPhys); caxis([0 1]); axis equal; axis off; drawnow;
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This Matlab code was written by E. Andreassen, A. Clausen, M. Schevenels,%
% B. S. Lazarov and O. Sigmund, Department of Solid Mechanics, %
% Technical University of Denmark, %
% DK-2800 Lyngby, Denmark. %
% Please sent your comments to: sigmund@fam.dtu.dk %
% %
% The code is intended for educational purposes and theoretical details %
% are discussed in the paper %
% "Efficient topology optimization in MATLAB using 88 lines of code, %
% E. Andreassen, A. Clausen, M. Schevenels, %
% B. S. Lazarov and O. Sigmund, Struct Multidisc Optim, 2010 %
% This version is based on earlier 99-line code %
% by Ole Sigmund (2001), Structural and Multidisciplinary Optimization, %
% Vol 21, pp. 120--127. %
% %
% The code as well as a postscript version of the paper can be %
% downloaded from the web-site: http://www.topopt.dtu.dk %
% %
% Disclaimer: %
% The authors reserves all rights but do not guaranty that the code is %
% free from errors. Furthermore, we shall not be liable in any event %
% caused by the use of the program. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

117
Top99Code/top99.m

@ -0,0 +1,117 @@
% a 99 line topology optimization code by Ole Sigmund,October 1999
clear
nelx=60;
nely=40;
volfrac=0.5;
penal=3.;
rmin=1.5;
% initialize
x(1:nely,1:nelx)=volfrac;
loop=0;
change=1;
% start ineration
while change>0.01
loop=loop+1;
xold=x;
% FE analysis
[U]=FE(nelx,nely,x,penal);
% objective function and sensitivity analysis
[KE]=lk;;
c=0.;
for ely=1:nely
for elx=1:nelx
n1=(nely+1)*(elx-1)+ely;
n2=(nely+1)*elx +ely;
Ue=U([2*n1-1;2*n1;2*n2-1;2*n2;2*n2+1;2*n2+2;2*n1+1;2*n1+2],1);
c=c+x(ely,elx)^penal*Ue'*KE*Ue;
dc(ely,elx)=-penal*x(ely,elx)^(penal-1)*Ue'*KE*Ue;
end
end
% filtering of sensitivities
[dc]=check(nelx,nely,rmin,x,dc);
% design update by the optimality criteria method
[x]=oc(nelx,nely,x,volfrac,dc);
% print result
change=max(max(x-xold))
disp(['It.:' sprintf( '%4i',loop) ' Obj.:' sprintf(' %10.4f',c) ...
' Vol.:' sprintf('%6.3f',sum(sum(x))/(nelx*nely)) ...
' ch.:' sprintf('%6.3f',change)])
% plot densities
colormap(gray);imagesc(-x);axis equal;axis tight; axis off;pause(1e-6);
end
% FE analysis
function [U]=FE(nelx,nely,x,penal)
[KE]=lk;
K=sparse(2*(nelx+1)*(nely+1),2*(nelx+1)*(nely+1));
F=sparse(2*(nely+1)*(nelx+1),1);
U=sparse(2*(nely+1)*(nelx+1),1);
for elx=1:nelx
for ely=1:nely
n1=(nely+1)*(elx-1)+ely;
n2=(nely+1)*elx +ely;
edof=[2*n1-1;2*n1;2*n2-1;2*n2;2*n2+1;2*n2+2;2*n1+1;2*n1+2];
K(edof,edof)=K(edof,edof)+x(ely,elx)^penal*KE;
end
end
% define loads and supports
ip=(nelx+1)*(nely+1);
F(2*ip,1)=-1;
fixeddofs =[1:2*(nely+1)];
alldofs =[1:2*(nely+1)*(nelx+1)];
freedofs =setdiff(alldofs,fixeddofs);
% solving
U(freedofs,:)=K(freedofs,freedofs)\F(freedofs,:);
U(fixeddofs,:)=0;
end
% mesh-independency filter
function [dcn]=check(nelx,nely,rmin,x,dc)
dcn=zeros(nely,nelx);
for i=1:nelx
for j=1:nely
sum=0.0;
for k=max(i-floor(rmin),1):min(i+floor(rmin),nelx)
for l=max(j-floor(rmin),1):min(j+floor(rmin),nely)
fac=rmin-sqrt((i-k)^2+(j-l)^2);
sum=sum+max(0,fac);
dcn(j,i)=dcn(j,i)+max(0,fac)*x(l,k)*dc(l,k);
end
end
dcn(j,i)=dcn(j,i)/(x(j,i)*sum);
end
end
end
% Element stiffness matrix
function [KE]=lk
E=1.;
nu=0.3;
k=[1/2-nu/6 1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...
-1/4+nu/12 -1/8-nu/8 nu/6 1/8-3*nu/8];
KE=E/(1-nu^2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)
k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3)
k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2)
k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5)
k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4)
k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7)
k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6)
k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)];
end
% optimality criteria update
function [xnew]=oc(nelx,nely,x,volfrac,dc)
l1=0;
l2=100000;
move=0.2;
while (l2-l1>1e-4)
lmid=0.5*(l2+l1);
xnew =max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lmid)))));
if sum(sum(xnew))-volfrac*nelx*nely>0;
l1=lmid;
else
l2=lmid;
end
end
end
Loading…
Cancel
Save