You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

253 lines
9.8 KiB

function stlwrite(filename, varargin)
%STLWRITE Write STL file from patch or surface data.
%
% STLWRITE(FILE, FV) writes a stereolithography (STL) file to FILE for a
% triangulated patch defined by FV (a structure with fields 'vertices'
% and 'faces').
%
% STLWRITE(FILE, FACES, VERTICES) takes faces and vertices separately,
% rather than in an FV struct
%
% STLWRITE(FILE, X, Y, Z) creates an STL file from surface data in X, Y,
% and Z. STLWRITE triangulates this gridded data into a triangulated
% surface using triangulation options specified below. X, Y and Z can be
% two-dimensional arrays with the same size. If X and Y are vectors with
% length equal to SIZE(Z,2) and SIZE(Z,1), respectively, they are passed
% through MESHGRID to create gridded data. If X or Y are scalar values,
% they are used to specify the X and Y spacing between grid points.
%
% STLWRITE(...,'PropertyName',VALUE,'PropertyName',VALUE,...) writes an
% STL file using the following property values:
%
% MODE - File is written using 'binary' (default) or 'ascii'.
%
% TITLE - Header text (max 80 chars) written to the STL file.
%
% TRIANGULATION - When used with gridded data, TRIANGULATION is either:
% 'delaunay' - (default) Delaunay triangulation of X, Y
% 'f' - Forward slash division of grid quads
% 'b' - Back slash division of quadrilaterals
% 'x' - Cross division of quadrilaterals
% Note that 'f', 'b', or 't' triangulations now use an
% inbuilt version of FEX entry 28327, "mesh2tri".
%
% FACECOLOR - Single colour (1-by-3) or one-colour-per-face (N-by-3)
% vector of RGB colours, for face/vertex input. RGB range
% is 5 bits (0:31), stored in VisCAM/SolidView format
% (http://en.wikipedia.org/wiki/STL_(file_format)#Color_in_binary_STL)
%
% Example 1:
% % Write binary STL from face/vertex data
% tmpvol = false(20,20,20); % Empty voxel volume
% tmpvol(8:12,8:12,5:15) = 1; % Turn some voxels on
% fv = isosurface(~tmpvol, 0.5); % Make patch w. faces "out"
% stlwrite('test.stl',fv) % Save to binary .stl
%
% Example 2:
% % Write ascii STL from gridded data
% [X,Y] = deal(1:40); % Create grid reference
% Z = peaks(40); % Create grid height
% stlwrite('test.stl',X,Y,Z,'mode','ascii')
%
% Example 3:
% % Write binary STL with coloured faces
% cVals = fv.vertices(fv.faces(:,1),3); % Colour by Z height.
% cLims = [min(cVals) max(cVals)]; % Transform height values
% nCols = 255; cMap = jet(nCols); % onto an 8-bit colour map
% fColsDbl = interp1(linspace(cLims(1),cLims(2),nCols),cMap,cVals);
% fCols8bit = fColsDbl*255; % Pass cols in 8bit (0-255) RGB triplets
% stlwrite('testCol.stl',fv,'FaceColor',fCols8bit)
% Original idea adapted from surf2stl by Bill McDonald. Huge speed
% improvements implemented by Oliver Woodford. Non-Delaunay triangulation
% of quadrilateral surface courtesy of Kevin Moerman. FaceColor
% implementation by Grant Lohsen.
%
% Author: Sven Holcombe, 11-24-11
% Check valid filename path
path = fileparts(filename);
if ~isempty(path) && ~exist(path,'dir')
error('Directory "%s" does not exist.',path);
end
% Get faces, vertices, and user-defined options for writing
[faces, vertices, options] = parseInputs(varargin{:});
asciiMode = strcmp( options.mode ,'ascii');
% Create the facets
facets = single(vertices');
facets = reshape(facets(:,faces'), 3, 3, []);
% Compute their normals
V1 = squeeze(facets(:,2,:) - facets(:,1,:));
V2 = squeeze(facets(:,3,:) - facets(:,1,:));
normals = V1([2 3 1],:) .* V2([3 1 2],:) - V2([2 3 1],:) .* V1([3 1 2],:);
clear V1 V2
normals = bsxfun(@times, normals, 1 ./ sqrt(sum(normals .* normals, 1)));
facets = cat(2, reshape(normals, 3, 1, []), facets);
clear normals
% Open the file for writing
permissions = {'w','wb+'};
fid = fopen(filename, permissions{asciiMode+1});
if (fid == -1)
error('stlwrite:cannotWriteFile', 'Unable to write to %s', filename);
end
% Write the file contents
if asciiMode
% Write HEADER
fprintf(fid,'solid %s\r\n',options.title);
% Write DATA
fprintf(fid,[...
'facet normal %.7E %.7E %.7E\r\n' ...
'outer loop\r\n' ...
'vertex %.7E %.7E %.7E\r\n' ...
'vertex %.7E %.7E %.7E\r\n' ...
'vertex %.7E %.7E %.7E\r\n' ...
'endloop\r\n' ...
'endfacet\r\n'], facets);
% Write FOOTER
fprintf(fid,'endsolid %s\r\n',options.title);
else % BINARY
% Write HEADER
fprintf(fid, '%-80s', options.title); % Title
fwrite(fid, size(facets, 3), 'uint32'); % Number of facets
% Write DATA
% Add one uint16(0) to the end of each facet using a typecasting trick
facets = reshape(typecast(facets(:), 'uint16'), 12*2, []);
% Set the last bit to 0 (default) or supplied RGB
facets(end+1,:) = options.facecolor;
fwrite(fid, facets, 'uint16');
end
% Close the file
fclose(fid);
% fprintf('Wrote %d facets\n',size(facets, 2));
%% Input handling subfunctions
function [faces, vertices, options] = parseInputs(varargin)
% Determine input type
if isstruct(varargin{1}) % stlwrite('file', FVstruct, ...)
if ~all(isfield(varargin{1},{'vertices','faces'}))
error( 'Variable p must be a faces/vertices structure' );
end
faces = varargin{1}.faces;
vertices = varargin{1}.vertices;
options = parseOptions(varargin{2:end});
elseif isnumeric(varargin{1})
firstNumInput = cellfun(@isnumeric,varargin);
firstNumInput(find(~firstNumInput,1):end) = 0; % Only consider numerical input PRIOR to the first non-numeric
numericInputCnt = nnz(firstNumInput);
options = parseOptions(varargin{numericInputCnt+1:end});
switch numericInputCnt
case 3 % stlwrite('file', X, Y, Z, ...)
% Extract the matrix Z
Z = varargin{3};
% Convert scalar XY to vectors
ZsizeXY = fliplr(size(Z));
for i = 1:2
if isscalar(varargin{i})
varargin{i} = (0:ZsizeXY(i)-1) * varargin{i};
end
end
% Extract X and Y
if isequal(size(Z), size(varargin{1}), size(varargin{2}))
% X,Y,Z were all provided as matrices
[X,Y] = varargin{1:2};
elseif numel(varargin{1})==ZsizeXY(1) && numel(varargin{2})==ZsizeXY(2)
% Convert vector XY to meshgrid
[X,Y] = meshgrid(varargin{1}, varargin{2});
else
error('stlwrite:badinput', 'Unable to resolve X and Y variables');
end
% Convert to faces/vertices
if strcmp(options.triangulation,'delaunay')
faces = delaunay(X,Y);
vertices = [X(:) Y(:) Z(:)];
else
if ~exist('mesh2tri','file')
error('stlwrite:missing', '"mesh2tri" is required to convert X,Y,Z matrices to STL. It can be downloaded from:\n%s\n',...
'http://www.mathworks.com/matlabcentral/fileexchange/28327')
end
[faces, vertices] = mesh2tri(X, Y, Z, options.triangulation);
end
case 2 % stlwrite('file', FACES, VERTICES, ...)
faces = varargin{1};
vertices = varargin{2};
otherwise
error('stlwrite:badinput', 'Unable to resolve input types.');
end
end
if ~isempty(options.facecolor) % Handle colour preparation
facecolor = uint16(options.facecolor);
%Set the Valid Color bit (bit 15)
c0 = bitshift(ones(size(faces,1),1,'uint16'),15);
%Red color (10:15), Blue color (5:9), Green color (0:4)
c0 = bitor(bitshift(bitand(2^6-1, facecolor(:,1)),10),c0);
c0 = bitor(bitshift(bitand(2^11-1, facecolor(:,2)),5),c0);
c0 = bitor(bitand(2^6-1, facecolor(:,3)),c0);
options.facecolor = c0;
else
options.facecolor = 0;
end
function options = parseOptions(varargin)
IP = inputParser;
IP.addParamValue('mode', 'binary', @ischar)
IP.addParamValue('title', sprintf('Created by stlwrite.m %s',datestr(now)), @ischar);
IP.addParamValue('triangulation', 'delaunay', @ischar);
IP.addParamValue('facecolor',[], @isnumeric)
IP.addParamValue('facecolour',[], @isnumeric)
IP.parse(varargin{:});
options = IP.Results;
if ~isempty(options.facecolour)
options.facecolor = options.facecolour;
end
function [F,V]=mesh2tri(X,Y,Z,tri_type)
% function [F,V]=mesh2tri(X,Y,Z,tri_type)
%
% Available from http://www.mathworks.com/matlabcentral/fileexchange/28327
% Included here for convenience. Many thanks to Kevin Mattheus Moerman
% kevinmoerman@hotmail.com
% 15/07/2010
%------------------------------------------------------------------------
[J,I]=meshgrid(1:1:size(X,2)-1,1:1:size(X,1)-1);
switch tri_type
case 'f'%Forward slash
TRI_I=[I(:),I(:)+1,I(:)+1; I(:),I(:),I(:)+1];
TRI_J=[J(:),J(:)+1,J(:); J(:),J(:)+1,J(:)+1];
F = sub2ind(size(X),TRI_I,TRI_J);
case 'b'%Back slash
TRI_I=[I(:),I(:)+1,I(:); I(:)+1,I(:)+1,I(:)];
TRI_J=[J(:)+1,J(:),J(:); J(:)+1,J(:),J(:)+1];
F = sub2ind(size(X),TRI_I,TRI_J);
case 'x'%Cross
TRI_I=[I(:)+1,I(:); I(:)+1,I(:)+1; I(:),I(:)+1; I(:),I(:)];
TRI_J=[J(:),J(:); J(:)+1,J(:); J(:)+1,J(:)+1; J(:),J(:)+1];
IND=((numel(X)+1):numel(X)+prod(size(X)-1))';
F = sub2ind(size(X),TRI_I,TRI_J);
F(:,3)=repmat(IND,[4,1]);
Fe_I=[I(:),I(:)+1,I(:)+1,I(:)]; Fe_J=[J(:),J(:),J(:)+1,J(:)+1];
Fe = sub2ind(size(X),Fe_I,Fe_J);
Xe=mean(X(Fe),2); Ye=mean(Y(Fe),2); Ze=mean(Z(Fe),2);
X=[X(:);Xe(:)]; Y=[Y(:);Ye(:)]; Z=[Z(:);Ze(:)];
end
V=[X(:),Y(:),Z(:)];