You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
302 lines
11 KiB
302 lines
11 KiB
function [dQ,dDHdx]= homogenization_test(x)
|
|
num = size(x,1);
|
|
nelx = num;
|
|
nely = num;
|
|
nelz = num;
|
|
% nelx = 20;
|
|
% nely = 20;
|
|
% nelz = 20;
|
|
% num = 20;
|
|
nele = nelx*nely*nelz;
|
|
|
|
% x = rand(nelx,nely,nelz);
|
|
% x = ones(nely,nelx,nelz).*0.5;
|
|
% x(nely/2:nely/2+1,nelx/2:nelx/2+1,nelz /2:nelz/2+1) = 1e-9;
|
|
% x(nely/2-1:nely/2+2,nelx/2-1:nelx/2+2,nelz/2-1:nelz/2+2) = 1e-9;
|
|
% x = max(1e-9,x);
|
|
E0 = 1; nu = 0.3;
|
|
Emin = 1e-9;
|
|
penal = 3;
|
|
D0 = E0/(1+nu)/(1-2*nu)* [ 1-nu nu nu 0 0 0;
|
|
nu 1-nu nu 0 0 0;
|
|
nu nu 1-nu 0 0 0;
|
|
0 0 0 (1-2*nu)/2 0 0;
|
|
0 0 0 0 (1-2*nu)/2 0;
|
|
0 0 0 0 0 (1-2*nu)/2;];
|
|
% disp(D0)
|
|
% [Q,dQ] = homogenization_energy(nelx,nely,nelz,D0,x,Emin,penal);
|
|
% disp(Q)
|
|
% disp(Q-D0*2)
|
|
[DH,dDHdx] = homogenization_my(num,D0,x,penal,E0,nu);
|
|
disp(DH)
|
|
% disp(Q-DH)
|
|
end
|
|
|
|
function [DH,dDHdx]=homogenization_my(num,D0,x,penal,E0,nu)
|
|
datafile = ['homKeFe_',num2str(num),'.mat'];
|
|
tic
|
|
if exist(datafile,'file')
|
|
load(datafile,'Ke','Fe','intB','intDB')
|
|
else
|
|
[Ke,Fe,intB,intDB] = symbolicKeFe(num,E0,nu);%========================================��Ԥ����
|
|
save(datafile,'Ke','Fe','intB','intDB')
|
|
end
|
|
toc
|
|
[eleidx,mesh,VE]=periodicMesh(num);
|
|
nele=size(mesh,1);nnode=nele;
|
|
edofMat = zeros(size(mesh,1),24);
|
|
edofMat(:,1:3:24) = mesh.*3-2;
|
|
edofMat(:,2:3:24) = mesh.*3-1;
|
|
edofMat(:,3:3:24) = mesh.*3;
|
|
iK = reshape(kron(edofMat,ones(24,1))',24*24*nele,1);
|
|
jK = reshape(kron(edofMat,ones(1,24))',24*24*nele,1);
|
|
|
|
iF = reshape(kron(edofMat,ones(6,1))',24*6*nele,1);
|
|
jF = reshape(kron(repmat([1 2 3 4 5 6],[nele,1]),ones(1,24))',24*6*nele,1);
|
|
|
|
sK = reshape(Ke(:)*((x(:).^penal).'),24*24*nele,1);
|
|
K = sparse(iK,jK,sK); %K = (K+K')/2;
|
|
sF = reshape(Fe(:)*((x(:).^penal).'),24*6*nele,1);
|
|
F = sparse(iF,jF,sF);
|
|
u = zeros(nnode*3,6);
|
|
% u(4:end,:)=K(4:end,4:end)\F(4:end,:);
|
|
|
|
for i=1:6
|
|
u(4:end,i)=pcg(K(4:end,4:end),F(4:end,i),1e-6,300);
|
|
end
|
|
|
|
x_vec=x(:);
|
|
I=eye(6);h=1.0/num;
|
|
DH=zeros(6,6);
|
|
dDHdx = zeros(6,6,nele);
|
|
for iele=1:nele
|
|
element=mesh(iele,:);
|
|
edof=zeros(1,24);
|
|
edof(1:3:24)=3*element(:)-2;
|
|
edof(2:3:24)=3*element(:)-1;
|
|
edof(3:3:24)=3*element(:);
|
|
uie=u(edof,:);
|
|
De = D0*(x_vec(iele).^penal);
|
|
% DH=DH+De*(I*h^3-intB*uie);
|
|
DH=DH+De*(I*h^3-intB*uie)+(x_vec(iele).^penal).*(uie.'*Ke*uie - uie.'*Fe);
|
|
dDHdx(:,:,iele) = penal*x(iele)^(penal-1).*(D0.*h^3 - 2.*intDB*uie + uie.'*Ke*uie);
|
|
end
|
|
end
|
|
|
|
function [Q,dQ] = homogenization_energy(nelx,nely,nelz,D0,xPhys,Emin,penal)
|
|
Emin=0;
|
|
nele = nelx*nely*nelz;
|
|
% KE = elementMatVec3D(1.0/nelx, 1.0/nely, 1.0/nelz, D0);
|
|
KE = elementMatVec3D(1.0/2, 1.0/2, 1.0/2, D0);
|
|
Num_node = (1+nely)*(1+nelx)*(1+nelz);
|
|
nodenrs = reshape(1:Num_node,1+nely,1+nelx,1+nelz);
|
|
edofVec = reshape(3*nodenrs(1:end-1,1:end-1,1:end-1)+1,nelx*nely*nelz,1);
|
|
edofMat = repmat(edofVec,1,24)+repmat([0 1 2 3*nely+[3 4 5 0 1 2] -3 -2 -1 3*(nelx+1)*(nely+1)+[0 1 2 3*nely+[3 4 5 0 1 2] -3 -2 -1]], nele, 1);
|
|
iK = reshape(kron(edofMat,ones(24,1))',24*24*nele,1);
|
|
jK = reshape(kron(edofMat,ones(1,24))',24*24*nele,1);
|
|
n1 = [nodenrs(end, [1 end], 1) nodenrs(1, [end 1], 1) nodenrs(end, [1 end], end) nodenrs(1, [end 1], end)];
|
|
d1 = reshape([3*n1-2; 3*n1-1; 3*n1],3*numel(n1),1);
|
|
n3 = [reshape(squeeze(nodenrs(end,1,2:end-1)),1,numel(squeeze(nodenrs(end,1,2:end-1))))...
|
|
reshape(squeeze(nodenrs(1, 1, 2:end-1)),1,numel(squeeze(nodenrs(1, 1, 2:end-1))))...
|
|
reshape(squeeze(nodenrs(end,2:end-1,1)),1,numel(squeeze(nodenrs(end,2:end-1,1))))...
|
|
reshape(squeeze(nodenrs(1, 2:end-1, 1)),1,numel(squeeze(nodenrs(1, 2:end-1, 1))))...
|
|
reshape(squeeze(nodenrs(2:end-1, 1, 1)),1,numel(squeeze(nodenrs(2:end-1, 1, 1))))...
|
|
reshape(squeeze(nodenrs(2:end-1,1,end)),1,numel(squeeze(nodenrs(2:end-1,1,end))))...
|
|
reshape(squeeze(nodenrs(2:end-1, 2:end-1, 1)),1,numel(squeeze(nodenrs(2:end-1, 2:end-1, 1))))...
|
|
reshape(squeeze(nodenrs(2:end-1, 1, 2:end-1)),1,numel(squeeze(nodenrs(2:end-1, 1, 2:end-1))))...
|
|
reshape(squeeze(nodenrs(end,2:end-1,2:end-1)),1,numel(squeeze(nodenrs(end,2:end-1,2:end-1))))];
|
|
d3 = reshape([3*n3-2; 3*n3-1; 3*n3],3*numel(n3),1);
|
|
n4 = [reshape(squeeze(nodenrs(1, end, 2:end-1)),1,numel(squeeze(nodenrs(1, end, 2:end-1))))...
|
|
reshape(squeeze(nodenrs(end,end,2:end-1)),1,numel(squeeze(nodenrs(end,end,2:end-1))))...
|
|
reshape(squeeze(nodenrs(1, 2:end-1, end)),1,numel(squeeze(nodenrs(1, 2:end-1, end))))...
|
|
reshape(squeeze(nodenrs(end,2:end-1,end)),1,numel(squeeze(nodenrs(end,2:end-1,end))))...
|
|
reshape(squeeze(nodenrs(2:end-1,end,end)),1,numel(squeeze(nodenrs(2:end-1,end,end))))...
|
|
reshape(squeeze(nodenrs(2:end-1, end, 1)),1,numel(squeeze(nodenrs(2:end-1, end, 1))))...
|
|
reshape(squeeze(nodenrs(2:end-1,2:end-1,end)),1,numel(squeeze(nodenrs(2:end-1,2:end-1,end))))...
|
|
reshape(squeeze(nodenrs(2:end-1,end,2:end-1)),1,numel(squeeze(nodenrs(2:end-1,end,2:end-1))))...
|
|
reshape(squeeze(nodenrs(1, 2:end-1, 2:end-1)),1,numel(squeeze(nodenrs(1, 2:end-1, 2:end-1))))];
|
|
d4 = reshape([3*n4-2; 3*n4-1; 3*n4],3*numel(n4),1);
|
|
n2 = setdiff(nodenrs(:),[n1(:);n3(:);n4(:)]);
|
|
d2 = reshape([3*n2-2; 3*n2- 1; 3*n2],3*numel(n2),1);
|
|
e = eye(6); ufixed = zeros(24,6);
|
|
vert_cor = [0, nelx, nelx, 0, 0, nelx, nelx, 0;
|
|
0, 0, nely, nely, 0, 0, nely, nely;
|
|
0, 0, 0, 0, nelz, nelz, nelz, nelz];
|
|
for i = 1:6
|
|
epsilon = [ e(i,1), e(i,4)/2, e(i,6)/2;
|
|
e(i,4)/2, e(i,2), e(i,5)/2;
|
|
e(i,6)/2, e(i,5)/2, e(i,3)];
|
|
ufixed(:,i) = reshape(epsilon*vert_cor,24,1);
|
|
end
|
|
% 3D boundary constraint equations
|
|
wfixed = [repmat(ufixed(7:9,:),numel(squeeze(nodenrs(end,1,2:end-1))),1);
|
|
repmat(ufixed( 4:6,:)-ufixed(10:12,:),numel(squeeze(nodenrs(1, 1, 2:end-1))),1);
|
|
repmat(ufixed(22:24,:),numel(squeeze(nodenrs(end,2:end-1,1))),1);
|
|
repmat(ufixed(13:15,:)-ufixed(10:12,:),numel(squeeze(nodenrs(1, 2:end-1, 1))),1);
|
|
repmat(ufixed(16:18,:),numel(squeeze(nodenrs(2:end-1, 1, 1))),1);
|
|
repmat(ufixed( 4:6,:)-ufixed(13:15,:),numel(squeeze(nodenrs(2:end-1,1,end))),1);
|
|
repmat(ufixed(13:15,:),numel(squeeze(nodenrs(2:end-1, 2:end-1,1))),1);
|
|
repmat(ufixed(4:6,:),numel(squeeze(nodenrs(2:end-1, 1, 2:end- 1))),1);
|
|
repmat(ufixed(10:12,:),numel(squeeze(nodenrs(end,2:end-1,2:end-1))),1)];
|
|
% sK = reshape(KE(:)*(Emin+xPhys(:)'.^penal*(1-Emin)),24*24*nele,1);
|
|
sK = reshape(KE(:)*(Emin+xPhys(:)'.^penal*(1-Emin)),24*24*nele,1);
|
|
K = sparse(iK,jK,sK); K = (K+K')/2;
|
|
Kr = [K(d2,d2), K(d2,d3)+K(d2,d4);
|
|
K(d3,d2)+K(d4,d2),K(d3,d3)+K(d4,d3)+K(d3,d4)+K(d4,d4)];
|
|
U(d1,:) = ufixed;
|
|
U([d2;d3],:) = Kr\(-[K(d2,d1);K(d3,d1)+K(d4,d1)]*ufixed-[K(d2,d4);K(d3,d4)+K(d4,d4)]*wfixed);
|
|
U(d4,:) = U(d3,:)+wfixed;
|
|
cellVolume = nele;
|
|
% cellVolume = 1;
|
|
qe = cell(6,6);
|
|
Q = zeros(6,6);dQ = cell(6,6);
|
|
for i = 1:6
|
|
for j = 1:6
|
|
U1 = U(:,i);
|
|
U2 = U(:,j);
|
|
qe{i,j} = reshape(sum((U1(edofMat)*KE).*U2(edofMat),2),nely,nelx,nelz);
|
|
Q(i,j) = 1/cellVolume*sum(sum(sum((Emin+xPhys.^penal*(1-Emin)).*qe{i,j})));
|
|
dQ{i,j} = 1/cellVolume*(penal*(1-Emin)*xPhys.^(penal-1).*qe{i,j});
|
|
end
|
|
end
|
|
end
|
|
|
|
function Ke = elementMatVec3D(a, b, c, DH)
|
|
GN_x=[-1/sqrt(3),1/sqrt(3)];
|
|
GN_y=GN_x;
|
|
GN_z=GN_x;
|
|
GaussWeigh=[1,1];
|
|
Ke = zeros(24,24); L = zeros(6,9);
|
|
L(1,1) = 1; L(2,5) = 1; L(3,9) = 1;
|
|
L(4,2) = 1; L(4,4) = 1; L(5,6) = 1;
|
|
L(5,8) = 1; L(6,3) = 1; L(6,7) = 1;
|
|
for i=1:length(GN_x)
|
|
for j=1:length(GN_y)
|
|
for k=1:length(GN_z)
|
|
x = GN_x(i);y = GN_y(j);z = GN_z(k);
|
|
dNx = 1/8*[-(1-y)*(1-z), (1-y)*(1-z), (1+y)*(1-z), -(1+y)*(1-z), -(1-y)*(1+z), (1-y)*(1+z), (1+y)*(1+z) -(1+y)*(1+z)];
|
|
dNy = 1/8*[-(1-x)*(1-z) -(1+x)*(1-z), (1+x)*(1-z), (1-x)*(1-z), -(1-x)*(1+z), -(1+x)*(1+z), (1+x)*(1+z), (1-x)*(1+z)];
|
|
dNz = 1/8*[-(1-x)*(1-y) -(1+x)*(1-y) -(1+x)*(1+y) -(1-x)*(1+y), (1-x)*(1-y), (1+x)*(1-y), (1+x)*(1+y), (1-x)*(1+y)];
|
|
J = [dNx;dNy;dNz]*[ -a a a -a -a a a -a ;
|
|
-b -b b b -b -b b b;
|
|
-c -c -c -c c c c c]';
|
|
G = [inv(J) zeros(3) zeros(3);zeros(3) inv(J) zeros(3);zeros(3) zeros(3) inv(J)];
|
|
dN(1,1:3:24) = dNx; dN(2,1:3:24) = dNy; dN(3,1:3:24) = dNz;
|
|
dN(4,2:3:24) = dNx; dN(5,2:3:24) = dNy; dN(6,2:3:24) = dNz;
|
|
dN(7,3:3:24) = dNx; dN(8,3:3:24) = dNy; dN(9,3:3:24) = dNz;
|
|
Be = L*G*dN;
|
|
Ke = Ke + GaussWeigh(i)*GaussWeigh(j)*GaussWeigh(k)*det(J)*(Be'*DH*Be);
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
function [eleidx,mesh,VE]=periodicMesh(num)
|
|
% [0,1]^3
|
|
nele=num^3;
|
|
nnod=(num+1)^3;
|
|
nodenrs=reshape(1:nnod,1+num,1+num,1+num);
|
|
edofvec=reshape(nodenrs(1:end-1,1:end-1,1:end-1),nele,1);
|
|
edofMat=repmat(edofvec,1,8)+repmat([0 1 num+1 num+2 (num+1)^2+[0 1 num+1 num+2]],nele,1);
|
|
|
|
nnp=nele;%total number of unique nodes
|
|
nnpArray=reshape(1:nnp,num,num,num);
|
|
eleidx=nnpArray;%element indices
|
|
|
|
nnpArray(end+1,:,:)=nnpArray(1,:,:);
|
|
nnpArray(:,end+1,:)=nnpArray(:,1,:);
|
|
nnpArray(:,:,end+1)=nnpArray(:,:,1);
|
|
|
|
dofvector=zeros(nnod,1);
|
|
dofvector(:)=nnpArray(:);
|
|
% dofvector(2:3:end)=3*nnpArray(:)-1;
|
|
% dofvector(3:3:end)=3*nnpArray(:);
|
|
|
|
mesh=dofvector(edofMat);
|
|
|
|
% coordinates of the 1st node of each element
|
|
h=1.0/num;
|
|
%V=zeros(num,num,num,3);
|
|
VE=zeros(nele,3);
|
|
for i=1:num
|
|
for j=1:num
|
|
for k=1:num
|
|
%V(i,j,k,:)=[(i-1)*h,(j-1)*h,(k-1)*h];
|
|
VE(eleidx(i,j,k),:)=[(i-1)*h,(j-1)*h,(k-1)*h];
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
function [Ke,Fe,intB,intDB] = symbolicKeFe(num,E,m)
|
|
h=1.0/num;
|
|
syms x y z
|
|
x0=0; y0=0; z0=0;
|
|
N(1) = (h+x0-x) * (h+y0-y) * (h+z0-z) / (h^3);
|
|
N(2) = (x-x0) * (h+y0-y) * (h+z0-z) / (h^3);
|
|
N(3) = (h+x0-x) * (y-y0) * (h+z0-z) / (h^3);
|
|
N(4) = (x-x0) * (y-y0) * (h+z0-z) / (h^3);
|
|
N(5) = (h+x0-x) * (h+y0-y) * (z-z0) / (h^3);
|
|
N(6) = (x-x0) * (h+y0-y) * (z-z0) / (h^3);
|
|
N(7) = (h+x0-x) * (y-y0) * (z-z0) / (h^3);
|
|
N(8) = (x-x0) * (y-y0) * (z-z0) / (h^3);
|
|
|
|
for j=1:8
|
|
for jj=1:3
|
|
Dif(3*jj-2,j*3+jj-3) = diff(N(j),x);
|
|
Dif(3*jj-1,j*3+jj-3) = diff(N(j),y);
|
|
Dif(3*jj, j*3+jj-3) = diff(N(j),z);
|
|
end
|
|
end
|
|
B9x24 = Dif;
|
|
for j=1:24
|
|
B(1,j) = B9x24(1,j);
|
|
B(2,j) = B9x24(5,j);
|
|
B(3,j) = B9x24(9,j);
|
|
B(4,j) = B9x24(2,j) + B9x24(4,j);
|
|
B(5,j) = B9x24(6,j) + B9x24(8,j);
|
|
B(6,j) = B9x24(3,j) + B9x24(7,j);
|
|
end
|
|
% Young's modulus & Poisson's ratio
|
|
%E = 2e11; m = 0.33;
|
|
a = E / ( (1+m) * (1-2*m) );
|
|
% 6 X 6 �ռ������ĵ���ϵ������
|
|
D = [a*(1-m) a*m a*m 0 0 0
|
|
a*m a*(1-m) a*m 0 0 0
|
|
a*m a*m a*(1-m) 0 0 0
|
|
0 0 0 a*(0.5-m) 0 0
|
|
0 0 0 0 a*(0.5-m) 0
|
|
0 0 0 0 0 a*(0.5-m)];
|
|
|
|
K=B.'*D*B;
|
|
Ke=zeros(24,24);
|
|
for i=1:24
|
|
for j=i:24
|
|
Ke(i,j)=int(int(int(K(i,j),'x',0,h),'y',0,h),'z',0,h);
|
|
end
|
|
end
|
|
Ke=Ke+Ke.'-diag(diag(Ke));
|
|
|
|
F=B.'*D;
|
|
Fe=zeros(24,6);
|
|
for i=1:24
|
|
for j=1:6
|
|
Fe(i,j)=int(int(int(F(i,j),'x',0,h),'y',0,h),'z',0,h);
|
|
end
|
|
end
|
|
intB=zeros(6,24);
|
|
for i=1:6
|
|
for j=1:24
|
|
intB(i,j)=double(int(int(int(B(i,j),'x',0,h),'y',0,h),'z',0,h));
|
|
end
|
|
end
|
|
|
|
intDB=zeros(6,24);
|
|
DB = D*B;
|
|
for i=1:6
|
|
for j=1:24
|
|
intDB(i,j)=double(int(int(int(DB(i,j),'x',0,h),'y',0,h),'z',0,h));
|
|
end
|
|
end
|
|
|
|
end
|