function [dQ,dDHdx]= homogenization_test(x) num = size(x,1); nelx = num; nely = num; nelz = num; % nelx = 20; % nely = 20; % nelz = 20; % num = 20; nele = nelx*nely*nelz; % x = rand(nelx,nely,nelz); % x = ones(nely,nelx,nelz).*0.5; % x(nely/2:nely/2+1,nelx/2:nelx/2+1,nelz /2:nelz/2+1) = 1e-9; % x(nely/2-1:nely/2+2,nelx/2-1:nelx/2+2,nelz/2-1:nelz/2+2) = 1e-9; % x = max(1e-9,x); E0 = 1; nu = 0.3; Emin = 1e-9; penal = 3; D0 = E0/(1+nu)/(1-2*nu)* [ 1-nu nu nu 0 0 0; nu 1-nu nu 0 0 0; nu nu 1-nu 0 0 0; 0 0 0 (1-2*nu)/2 0 0; 0 0 0 0 (1-2*nu)/2 0; 0 0 0 0 0 (1-2*nu)/2;]; % disp(D0) % [Q,dQ] = homogenization_energy(nelx,nely,nelz,D0,x,Emin,penal); % disp(Q) % disp(Q-D0*2) [DH,dDHdx] = homogenization_my(num,D0,x,penal,E0,nu); disp(DH) % disp(Q-DH) end function [DH,dDHdx]=homogenization_my(num,D0,x,penal,E0,nu) datafile = ['homKeFe_',num2str(num),'.mat']; tic if exist(datafile,'file') load(datafile,'Ke','Fe','intB','intDB') else [Ke,Fe,intB,intDB] = symbolicKeFe(num,E0,nu);%========================================可预计算 save(datafile,'Ke','Fe','intB','intDB') end toc [eleidx,mesh,VE]=periodicMesh(num); nele=size(mesh,1);nnode=nele; edofMat = zeros(size(mesh,1),24); edofMat(:,1:3:24) = mesh.*3-2; edofMat(:,2:3:24) = mesh.*3-1; edofMat(:,3:3:24) = mesh.*3; iK = reshape(kron(edofMat,ones(24,1))',24*24*nele,1); jK = reshape(kron(edofMat,ones(1,24))',24*24*nele,1); iF = reshape(kron(edofMat,ones(6,1))',24*6*nele,1); jF = reshape(kron(repmat([1 2 3 4 5 6],[nele,1]),ones(1,24))',24*6*nele,1); sK = reshape(Ke(:)*((x(:).^penal).'),24*24*nele,1); K = sparse(iK,jK,sK); %K = (K+K')/2; sF = reshape(Fe(:)*((x(:).^penal).'),24*6*nele,1); F = sparse(iF,jF,sF); u = zeros(nnode*3,6); % u(4:end,:)=K(4:end,4:end)\F(4:end,:); for i=1:6 u(4:end,i)=pcg(K(4:end,4:end),F(4:end,i),1e-6,300); end x_vec=x(:); I=eye(6);h=1.0/num; DH=zeros(6,6); dDHdx = zeros(6,6,nele); for iele=1:nele element=mesh(iele,:); edof=zeros(1,24); edof(1:3:24)=3*element(:)-2; edof(2:3:24)=3*element(:)-1; edof(3:3:24)=3*element(:); uie=u(edof,:); De = D0*(x_vec(iele).^penal); % DH=DH+De*(I*h^3-intB*uie); DH=DH+De*(I*h^3-intB*uie)+(x_vec(iele).^penal).*(uie.'*Ke*uie - uie.'*Fe); dDHdx(:,:,iele) = penal*x(iele)^(penal-1).*(D0.*h^3 - 2.*intDB*uie + uie.'*Ke*uie); end end function [Q,dQ] = homogenization_energy(nelx,nely,nelz,D0,xPhys,Emin,penal) Emin=0; nele = nelx*nely*nelz; % KE = elementMatVec3D(1.0/nelx, 1.0/nely, 1.0/nelz, D0); KE = elementMatVec3D(1.0/2, 1.0/2, 1.0/2, D0); Num_node = (1+nely)*(1+nelx)*(1+nelz); nodenrs = reshape(1:Num_node,1+nely,1+nelx,1+nelz); edofVec = reshape(3*nodenrs(1:end-1,1:end-1,1:end-1)+1,nelx*nely*nelz,1); edofMat = repmat(edofVec,1,24)+repmat([0 1 2 3*nely+[3 4 5 0 1 2] -3 -2 -1 3*(nelx+1)*(nely+1)+[0 1 2 3*nely+[3 4 5 0 1 2] -3 -2 -1]], nele, 1); iK = reshape(kron(edofMat,ones(24,1))',24*24*nele,1); jK = reshape(kron(edofMat,ones(1,24))',24*24*nele,1); n1 = [nodenrs(end, [1 end], 1) nodenrs(1, [end 1], 1) nodenrs(end, [1 end], end) nodenrs(1, [end 1], end)]; d1 = reshape([3*n1-2; 3*n1-1; 3*n1],3*numel(n1),1); n3 = [reshape(squeeze(nodenrs(end,1,2:end-1)),1,numel(squeeze(nodenrs(end,1,2:end-1))))... reshape(squeeze(nodenrs(1, 1, 2:end-1)),1,numel(squeeze(nodenrs(1, 1, 2:end-1))))... reshape(squeeze(nodenrs(end,2:end-1,1)),1,numel(squeeze(nodenrs(end,2:end-1,1))))... reshape(squeeze(nodenrs(1, 2:end-1, 1)),1,numel(squeeze(nodenrs(1, 2:end-1, 1))))... reshape(squeeze(nodenrs(2:end-1, 1, 1)),1,numel(squeeze(nodenrs(2:end-1, 1, 1))))... reshape(squeeze(nodenrs(2:end-1,1,end)),1,numel(squeeze(nodenrs(2:end-1,1,end))))... reshape(squeeze(nodenrs(2:end-1, 2:end-1, 1)),1,numel(squeeze(nodenrs(2:end-1, 2:end-1, 1))))... reshape(squeeze(nodenrs(2:end-1, 1, 2:end-1)),1,numel(squeeze(nodenrs(2:end-1, 1, 2:end-1))))... reshape(squeeze(nodenrs(end,2:end-1,2:end-1)),1,numel(squeeze(nodenrs(end,2:end-1,2:end-1))))]; d3 = reshape([3*n3-2; 3*n3-1; 3*n3],3*numel(n3),1); n4 = [reshape(squeeze(nodenrs(1, end, 2:end-1)),1,numel(squeeze(nodenrs(1, end, 2:end-1))))... reshape(squeeze(nodenrs(end,end,2:end-1)),1,numel(squeeze(nodenrs(end,end,2:end-1))))... reshape(squeeze(nodenrs(1, 2:end-1, end)),1,numel(squeeze(nodenrs(1, 2:end-1, end))))... reshape(squeeze(nodenrs(end,2:end-1,end)),1,numel(squeeze(nodenrs(end,2:end-1,end))))... reshape(squeeze(nodenrs(2:end-1,end,end)),1,numel(squeeze(nodenrs(2:end-1,end,end))))... reshape(squeeze(nodenrs(2:end-1, end, 1)),1,numel(squeeze(nodenrs(2:end-1, end, 1))))... reshape(squeeze(nodenrs(2:end-1,2:end-1,end)),1,numel(squeeze(nodenrs(2:end-1,2:end-1,end))))... reshape(squeeze(nodenrs(2:end-1,end,2:end-1)),1,numel(squeeze(nodenrs(2:end-1,end,2:end-1))))... reshape(squeeze(nodenrs(1, 2:end-1, 2:end-1)),1,numel(squeeze(nodenrs(1, 2:end-1, 2:end-1))))]; d4 = reshape([3*n4-2; 3*n4-1; 3*n4],3*numel(n4),1); n2 = setdiff(nodenrs(:),[n1(:);n3(:);n4(:)]); d2 = reshape([3*n2-2; 3*n2- 1; 3*n2],3*numel(n2),1); e = eye(6); ufixed = zeros(24,6); vert_cor = [0, nelx, nelx, 0, 0, nelx, nelx, 0; 0, 0, nely, nely, 0, 0, nely, nely; 0, 0, 0, 0, nelz, nelz, nelz, nelz]; for i = 1:6 epsilon = [ e(i,1), e(i,4)/2, e(i,6)/2; e(i,4)/2, e(i,2), e(i,5)/2; e(i,6)/2, e(i,5)/2, e(i,3)]; ufixed(:,i) = reshape(epsilon*vert_cor,24,1); end % 3D boundary constraint equations wfixed = [repmat(ufixed(7:9,:),numel(squeeze(nodenrs(end,1,2:end-1))),1); repmat(ufixed( 4:6,:)-ufixed(10:12,:),numel(squeeze(nodenrs(1, 1, 2:end-1))),1); repmat(ufixed(22:24,:),numel(squeeze(nodenrs(end,2:end-1,1))),1); repmat(ufixed(13:15,:)-ufixed(10:12,:),numel(squeeze(nodenrs(1, 2:end-1, 1))),1); repmat(ufixed(16:18,:),numel(squeeze(nodenrs(2:end-1, 1, 1))),1); repmat(ufixed( 4:6,:)-ufixed(13:15,:),numel(squeeze(nodenrs(2:end-1,1,end))),1); repmat(ufixed(13:15,:),numel(squeeze(nodenrs(2:end-1, 2:end-1,1))),1); repmat(ufixed(4:6,:),numel(squeeze(nodenrs(2:end-1, 1, 2:end- 1))),1); repmat(ufixed(10:12,:),numel(squeeze(nodenrs(end,2:end-1,2:end-1))),1)]; % sK = reshape(KE(:)*(Emin+xPhys(:)'.^penal*(1-Emin)),24*24*nele,1); sK = reshape(KE(:)*(Emin+xPhys(:)'.^penal*(1-Emin)),24*24*nele,1); K = sparse(iK,jK,sK); K = (K+K')/2; Kr = [K(d2,d2), K(d2,d3)+K(d2,d4); K(d3,d2)+K(d4,d2),K(d3,d3)+K(d4,d3)+K(d3,d4)+K(d4,d4)]; U(d1,:) = ufixed; U([d2;d3],:) = Kr\(-[K(d2,d1);K(d3,d1)+K(d4,d1)]*ufixed-[K(d2,d4);K(d3,d4)+K(d4,d4)]*wfixed); U(d4,:) = U(d3,:)+wfixed; cellVolume = nele; % cellVolume = 1; qe = cell(6,6); Q = zeros(6,6);dQ = cell(6,6); for i = 1:6 for j = 1:6 U1 = U(:,i); U2 = U(:,j); qe{i,j} = reshape(sum((U1(edofMat)*KE).*U2(edofMat),2),nely,nelx,nelz); Q(i,j) = 1/cellVolume*sum(sum(sum((Emin+xPhys.^penal*(1-Emin)).*qe{i,j}))); dQ{i,j} = 1/cellVolume*(penal*(1-Emin)*xPhys.^(penal-1).*qe{i,j}); end end end function Ke = elementMatVec3D(a, b, c, DH) GN_x=[-1/sqrt(3),1/sqrt(3)]; GN_y=GN_x; GN_z=GN_x; GaussWeigh=[1,1]; Ke = zeros(24,24); L = zeros(6,9); L(1,1) = 1; L(2,5) = 1; L(3,9) = 1; L(4,2) = 1; L(4,4) = 1; L(5,6) = 1; L(5,8) = 1; L(6,3) = 1; L(6,7) = 1; for i=1:length(GN_x) for j=1:length(GN_y) for k=1:length(GN_z) x = GN_x(i);y = GN_y(j);z = GN_z(k); dNx = 1/8*[-(1-y)*(1-z), (1-y)*(1-z), (1+y)*(1-z), -(1+y)*(1-z), -(1-y)*(1+z), (1-y)*(1+z), (1+y)*(1+z) -(1+y)*(1+z)]; dNy = 1/8*[-(1-x)*(1-z) -(1+x)*(1-z), (1+x)*(1-z), (1-x)*(1-z), -(1-x)*(1+z), -(1+x)*(1+z), (1+x)*(1+z), (1-x)*(1+z)]; dNz = 1/8*[-(1-x)*(1-y) -(1+x)*(1-y) -(1+x)*(1+y) -(1-x)*(1+y), (1-x)*(1-y), (1+x)*(1-y), (1+x)*(1+y), (1-x)*(1+y)]; J = [dNx;dNy;dNz]*[ -a a a -a -a a a -a ; -b -b b b -b -b b b; -c -c -c -c c c c c]'; G = [inv(J) zeros(3) zeros(3);zeros(3) inv(J) zeros(3);zeros(3) zeros(3) inv(J)]; dN(1,1:3:24) = dNx; dN(2,1:3:24) = dNy; dN(3,1:3:24) = dNz; dN(4,2:3:24) = dNx; dN(5,2:3:24) = dNy; dN(6,2:3:24) = dNz; dN(7,3:3:24) = dNx; dN(8,3:3:24) = dNy; dN(9,3:3:24) = dNz; Be = L*G*dN; Ke = Ke + GaussWeigh(i)*GaussWeigh(j)*GaussWeigh(k)*det(J)*(Be'*DH*Be); end end end end function [eleidx,mesh,VE]=periodicMesh(num) % [0,1]^3 nele=num^3; nnod=(num+1)^3; nodenrs=reshape(1:nnod,1+num,1+num,1+num); edofvec=reshape(nodenrs(1:end-1,1:end-1,1:end-1),nele,1); edofMat=repmat(edofvec,1,8)+repmat([0 1 num+1 num+2 (num+1)^2+[0 1 num+1 num+2]],nele,1); nnp=nele;%total number of unique nodes nnpArray=reshape(1:nnp,num,num,num); eleidx=nnpArray;%element indices nnpArray(end+1,:,:)=nnpArray(1,:,:); nnpArray(:,end+1,:)=nnpArray(:,1,:); nnpArray(:,:,end+1)=nnpArray(:,:,1); dofvector=zeros(nnod,1); dofvector(:)=nnpArray(:); % dofvector(2:3:end)=3*nnpArray(:)-1; % dofvector(3:3:end)=3*nnpArray(:); mesh=dofvector(edofMat); % coordinates of the 1st node of each element h=1.0/num; %V=zeros(num,num,num,3); VE=zeros(nele,3); for i=1:num for j=1:num for k=1:num %V(i,j,k,:)=[(i-1)*h,(j-1)*h,(k-1)*h]; VE(eleidx(i,j,k),:)=[(i-1)*h,(j-1)*h,(k-1)*h]; end end end end function [Ke,Fe,intB,intDB] = symbolicKeFe(num,E,m) h=1.0/num; syms x y z x0=0; y0=0; z0=0; N(1) = (h+x0-x) * (h+y0-y) * (h+z0-z) / (h^3); N(2) = (x-x0) * (h+y0-y) * (h+z0-z) / (h^3); N(3) = (h+x0-x) * (y-y0) * (h+z0-z) / (h^3); N(4) = (x-x0) * (y-y0) * (h+z0-z) / (h^3); N(5) = (h+x0-x) * (h+y0-y) * (z-z0) / (h^3); N(6) = (x-x0) * (h+y0-y) * (z-z0) / (h^3); N(7) = (h+x0-x) * (y-y0) * (z-z0) / (h^3); N(8) = (x-x0) * (y-y0) * (z-z0) / (h^3); for j=1:8 for jj=1:3 Dif(3*jj-2,j*3+jj-3) = diff(N(j),x); Dif(3*jj-1,j*3+jj-3) = diff(N(j),y); Dif(3*jj, j*3+jj-3) = diff(N(j),z); end end B9x24 = Dif; for j=1:24 B(1,j) = B9x24(1,j); B(2,j) = B9x24(5,j); B(3,j) = B9x24(9,j); B(4,j) = B9x24(2,j) + B9x24(4,j); B(5,j) = B9x24(6,j) + B9x24(8,j); B(6,j) = B9x24(3,j) + B9x24(7,j); end % Young's modulus & Poisson's ratio %E = 2e11; m = 0.33; a = E / ( (1+m) * (1-2*m) ); % 6 X 6 空间问题的弹性系数矩阵 D = [a*(1-m) a*m a*m 0 0 0 a*m a*(1-m) a*m 0 0 0 a*m a*m a*(1-m) 0 0 0 0 0 0 a*(0.5-m) 0 0 0 0 0 0 a*(0.5-m) 0 0 0 0 0 0 a*(0.5-m)]; K=B.'*D*B; Ke=zeros(24,24); for i=1:24 for j=i:24 Ke(i,j)=int(int(int(K(i,j),'x',0,h),'y',0,h),'z',0,h); end end Ke=Ke+Ke.'-diag(diag(Ke)); F=B.'*D; Fe=zeros(24,6); for i=1:24 for j=1:6 Fe(i,j)=int(int(int(F(i,j),'x',0,h),'y',0,h),'z',0,h); end end intB=zeros(6,24); for i=1:6 for j=1:24 intB(i,j)=double(int(int(int(B(i,j),'x',0,h),'y',0,h),'z',0,h)); end end intDB=zeros(6,24); DB = D*B; for i=1:6 for j=1:24 intDB(i,j)=double(int(int(int(DB(i,j),'x',0,h),'y',0,h),'z',0,h)); end end end