该项目是《Problem-independent machine learning (PIML)-based topology optimization—A universal approach》的python复现
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

26 lines
1.3 KiB

from .base_options import BaseOptions
class TopoptOption(BaseOptions):
"""This class includes test options.
It also includes shared options defined in BaseOptions.
"""
def initialize(self, parser):
parser = BaseOptions.initialize(self, parser) # define shared options
parser.add_argument('--phase', type=str, default='topopt', help='train, val, test, etc')
parser.add_argument('--pretrained_model_path', type=str, default='./checkpoints/ANN_mod1_231224-222338/ANN_mod1_opt.pt', help='pretrained model file load path')
parser.add_argument('--mod_idx', type=str, default='mod1', help='mod_idx for identify save path')
parser.add_argument('--nelx_to', type=int, default=180, help='num of elements on x-axis')
parser.add_argument('--nely_to', type=int, default=60, help='num of elements on y-axis')
parser.add_argument('--ms_ratio_to', type=int, default=5, help='multiscale ratio')
parser.add_argument('--volfrac', type=float, default=0.4, help='volfrac')
parser.add_argument('--rmin', type=float, default=5.4, help='rmin')
parser.add_argument('--penal', type=float, default=3.0, help='penal')
parser.add_argument('--ft', type=int, default=1, help='ft')
self.isTrain = False
return parser