You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			| 
				
					 | 
			2 years ago | |
|---|---|---|
| doc | 2 years ago | |
| models | 2 years ago | |
| options | 2 years ago | |
| utils | 2 years ago | |
| .gitignore | 2 years ago | |
| README.md | 2 years ago | |
| requirements.txt | 2 years ago | |
| test.py | 2 years ago | |
| topopt_EMsFEA.py | 2 years ago | |
| train.py | 2 years ago | |
| visualization.ipynb | 2 years ago | |
		
			
				
				README.md
			
		
		
	
	该项目是《Problem-independent machine learning (PIML)-based topology optimization—A universal approach》的python复现
环境依赖
PyTorch 2.1.0 CUDA 12.1 Ubuntu 20.04 (没有用到新特性,所以应该对旧版本兼容)
# matplotlib==3.8.0
# numpy==1.26.2
# scikit_learn==1.3.0
# torch==2.1.0
pip install -r requirements.txt
Usage
TODO: [done] 用argparse模块管理网络参数
Train
python train.py
# --mod [mod1 mod2 mod3] 参数选择训练数据,默认mod1
# e.g. python train.py --mod mod1
Test
python test.py
# --mod [mod1 mod2 mod3] 参数选择测试数据,默认mod3
# --pretrained_model_path <xxx_opt.pt> 选择预训练模型,默认./checkpoints/ANN_mod1/ANN_mod1_opt.pt
# e.g. python test.py --mod mod3 --pretrained_model_path ./checkpoints/ANN_mod1/ANN_mod1_opt.pt
TopOpt with EMsFEA net
python topopt_EMsFEA.py
# 参数详见options/topopt_options.py
数据集
通过经典二维拓扑优化代码生成的三组形变、密度数据
Download from:
http://118.195.195.192:3000/GyeongYun/EMsFEA-net/raw/branch/resources/datasets.zip
项目结构
.
|-- README.md
|-- checkpoints
|   `-- ...
|-- datasets
|   |-- train
|   |   `--resolution
|   |      |--u
|   |      `--xPhys
|   |-- test
|-- models
|   |-- ANN.py
|   |-- AutoEncoder.py
|   |-- CNN.py
|   `-- __init__.py
|-- options
|   |-- __init__.py
|   |-- base_options.py
|   |-- test_options.py
|   `-- train_options.py
|-- requirements.txt
|-- results
|-- test.py
|-- topopt_EMsFEA.py
|-- train.py
|-- utils
|   |-- data_loader.py
|   |-- data_standardizer.py
|   |-- topopt_88.py
|   `-- utils.py
`-- visualization.ipynb
			
		

