You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			| 
				
					 | 
			2 years ago | |
|---|---|---|
| checkpoints | 2 years ago | |
| datasets | 2 years ago | |
| models | 2 years ago | |
| utils | 2 years ago | |
| .gitignore | 2 years ago | |
| README.md | 2 years ago | |
| my-FEA-net.ipynb | 2 years ago | |
| requirements.txt | 2 years ago | |
| test.ipynb | 2 years ago | |
| test.py | 2 years ago | |
| topopt_EMsFEA.py | 2 years ago | |
| train.py | 2 years ago | |
		
			
				
				README.md
			
		
		
	
	该项目是《Problem-independent machine learning (PIML)-based topology optimization—A universal approach》机器学习网络部分的复现
环境依赖
PyTorch 2.1.0 CUDA 12.1 Ubuntu 20.04 (没有用到新特性,所以应该对旧版本兼容)
# matplotlib==3.8.0
# numpy==1.26.2
# scikit_learn==1.3.0
# torch==2.1.0
pip install -r requirements.txt
Usage
TODO: 用argparse模块管理网络参数
Train
python train.py
编辑
train.py内data_mod变量选择数据
Test
python test.py
编辑
test.py内dataload_mod和pretrained_mod变量选择加载数据和预训练模型
数据集
通过经典二维拓扑优化代码生成的三组形变、密度数据
项目结构
.
├── checkpoints
│   ├── ...
├── datasets
│   ├── ...
├── models
│   ├── ANN.py
│   ├── AutoEncoder.py
│   └── CNN.py
├── README.md
├── requirements.txt
├── test.py
├── train.py
└── utils
    ├── data_loader.py
    └── data_standardizer.py
			
		

