该项目是《Problem-independent machine learning (PIML)-based topology optimization—A universal approach》的python复现
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

103 lines
4.4 KiB

import numpy as np
import os
def data_loader_new(opt):
nelx=opt.nelx
nely=opt.nely
m=opt.ms_ratio
coarse_nelx = int(nelx/m)
coarse_nely = int(nely/m)
# './datasets/train/180_60/u_OR_xPhys/mod1.npy' as default
density_load_path = os.path.join(opt.dataroot, opt.phase, str(opt.nelx)+'_'+str(opt.nely), 'xPhys', opt.mod+'.npy')
displace_load_path = os.path.join(opt.dataroot, opt.phase, str(opt.nelx)+'_'+str(opt.nely), 'u', opt.mod+'.npy')
global_density = np.load(density_load_path) # (nely , nelx)
global_displace = np.load(displace_load_path) # ( (nely+1)*(nelx+1)*2 , 1 )
# 有意义的情况:
global_density=global_density.reshape(nely,nelx).T # -> (nelx , nely)
global_displace=global_displace.reshape(nelx+1,nely+1,2) # -> (nelx+1), (nely+1), 2
print(global_density.shape)
print(global_displace.shape)
# Generate coarse mesh density
coarse_density = np.lib.stride_tricks.as_strided(
global_density,
shape=(coarse_nelx, coarse_nely, m, m), # 要输出矩阵的 shape
strides=global_density.itemsize * np.array([nely*m, m, nely, 1])
)
print(coarse_density.shape)
# Generate coarse mesh displacement
coarse_displace= np.lib.stride_tricks.as_strided(
global_displace,
shape=(coarse_nelx, coarse_nely, 2, 2, 2), # 要输出矩阵的 shape
strides=global_displace.itemsize * np.array([(nely+1)*m*2, m*2, (nely+1)*m*2, m*2, 1])
)
print(coarse_displace.shape)
# Generate fine mesh displacement
fine_displace= np.lib.stride_tricks.as_strided(
global_displace,
shape=(coarse_nelx, coarse_nely, m+1, m+1, 2), # 要输出矩阵的 shape
strides=global_displace.itemsize * np.array([(nely+1)*m*2, m*2, (nely+1)*2, 1*2, 1])
)
print(fine_displace.shape)
return global_density, global_displace, coarse_density, coarse_displace, fine_displace
def data_loader(opt):
# Load datasets
# './datasets/train/180_60/u_OR_xPhys/mod1.npy' as default
density_load_path = os.path.join(opt.dataroot, opt.phase, str(opt.nelx)+'_'+str(opt.nely), 'xPhys', opt.mod+'.npy')
displace_load_path = os.path.join(opt.dataroot, opt.phase, str(opt.nelx)+'_'+str(opt.nely), 'u', opt.mod+'.npy')
global_density = np.load(density_load_path) # (nely , nelx)
global_displace = np.load(displace_load_path) # ( (nely+1)*(nelx+1)*2 , 1 )
global_displace = global_displace.reshape(opt.nelx+1, opt.nely+1, 2)
global_displace = np.dstack((global_displace[:,:,0].T, global_displace[:,:,1].T)) # -> ( (nelx+1), (nelx+1), 2 )
m=opt.ms_ratio
N=(m+1)**2
global_nely=global_density.shape[0]
global_nelx=global_density.shape[1]
coarse_nely = int(global_nely/m)
coarse_nelx = int(global_nelx/m)
# Generate coarse mesh density
coarse_density=np.zeros(shape=(coarse_nely*coarse_nelx,m*m))
for ely in range(coarse_nely):
for elx in range(coarse_nelx):
coarse_density[elx + ely * m] = global_density[ely * m : (ely + 1) * m, elx * m : (elx + 1) * m].flatten()
print(coarse_density.shape)
# Generate coarse mesh displacement
coarse_displace=np.zeros(shape=(coarse_nely*coarse_nelx,4,2))
for ely in range(coarse_nely):
for elx in range(coarse_nelx):
coarse_displace[elx + ely * m][0] = global_displace[ely * m, elx * m, :]
coarse_displace[elx + ely * m][1] = global_displace[ely * m, (elx+1) * m, :]
coarse_displace[elx + ely * m][2] = global_displace[(ely+1) * m, elx * m, :]
coarse_displace[elx + ely * m][3] = global_displace[(ely+1) * m, (elx+1) * m, :]
print(coarse_displace.shape)
# Generate fine mesh displacement
fine_displace=np.zeros(shape=(coarse_nely*coarse_nelx, ((m+1)**2) * 2))
for ely in range(coarse_nely):
for elx in range(coarse_nelx):
fine_displace[elx + ely * m] = global_displace[ely*m : (ely+1)*m+1, elx*m : (elx+1)*m+1, :].flatten()
print(fine_displace.shape)
return global_density, global_displace, coarse_density, coarse_displace, fine_displace
if __name__=='__main__':
global_density, global_displace, coarse_density, coarse_displace, fine_displace=data_loader_new('datasets/train/180_60/xPhys/mod1.npy', 'datasets/train/180_60/u/mod1.npy')
print(global_displace[:10,:10,0])
print(fine_displace[33,11,:,:,0])
print(coarse_displace[33,11,:,:,0])