You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
6.5 KiB
186 lines
6.5 KiB
1 year ago
|
# A 165 LINE TOPOLOGY OPTIMIZATION CODE BY NIELS AAGE AND VILLADS EGEDE JOHANSEN, JANUARY 2013
|
||
|
from __future__ import division
|
||
|
import numpy as np
|
||
|
from scipy.sparse import coo_matrix
|
||
|
from scipy.sparse.linalg import spsolve
|
||
|
from matplotlib import colors
|
||
|
import matplotlib.pyplot as plt
|
||
|
# MAIN DRIVER
|
||
1 year ago
|
def top88(nelx,nely,volfrac,penal,rmin,ft,mod_idx):
|
||
1 year ago
|
print("Minimum compliance problem with OC")
|
||
|
print("ndes: " + str(nelx) + " x " + str(nely))
|
||
|
print("volfrac: " + str(volfrac) + ", rmin: " + str(rmin) + ", penal: " + str(penal))
|
||
|
print("Filter method: " + ["Sensitivity based","Density based"][ft])
|
||
|
# Max and min stiffness
|
||
|
Emin=1e-9
|
||
|
Emax=1.0
|
||
|
# dofs:
|
||
|
ndof = 2*(nelx+1)*(nely+1)
|
||
|
# Allocate design variables (as array), initialize and allocate sens.
|
||
|
x=volfrac * np.ones(nely*nelx,dtype=float)
|
||
|
xold=x.copy()
|
||
|
xPhys=x.copy()
|
||
|
g=0 # must be initialized to use the NGuyen/Paulino OC approach
|
||
|
dc=np.zeros((nely,nelx), dtype=float)
|
||
|
# FE: Build the index vectors for the for coo matrix format.
|
||
|
KE=lk()
|
||
|
edofMat=np.zeros((nelx*nely,8),dtype=int)
|
||
|
for elx in range(nelx):
|
||
|
for ely in range(nely):
|
||
|
el = ely+elx*nely
|
||
|
n1=(nely+1)*elx+ely
|
||
|
n2=(nely+1)*(elx+1)+ely
|
||
|
edofMat[el,:]=np.array([2*n1+2, 2*n1+3, 2*n2+2, 2*n2+3,2*n2, 2*n2+1, 2*n1, 2*n1+1])
|
||
|
# Construct the index pointers for the coo format
|
||
|
iK = np.kron(edofMat,np.ones((8,1))).flatten()
|
||
|
jK = np.kron(edofMat,np.ones((1,8))).flatten()
|
||
|
# Filter: Build (and assemble) the index+data vectors for the coo matrix format
|
||
|
nfilter=int(nelx*nely*((2*(np.ceil(rmin)-1)+1)**2))
|
||
|
iH = np.zeros(nfilter)
|
||
|
jH = np.zeros(nfilter)
|
||
|
sH = np.zeros(nfilter)
|
||
|
cc=0
|
||
|
for i in range(nelx):
|
||
|
for j in range(nely):
|
||
|
row=i*nely+j
|
||
|
kk1=int(np.maximum(i-(np.ceil(rmin)-1),0))
|
||
|
kk2=int(np.minimum(i+np.ceil(rmin),nelx))
|
||
|
ll1=int(np.maximum(j-(np.ceil(rmin)-1),0))
|
||
|
ll2=int(np.minimum(j+np.ceil(rmin),nely))
|
||
|
for k in range(kk1,kk2):
|
||
|
for l in range(ll1,ll2):
|
||
|
col=k*nely+l
|
||
|
fac=rmin-np.sqrt(((i-k)*(i-k)+(j-l)*(j-l)))
|
||
|
iH[cc]=row
|
||
|
jH[cc]=col
|
||
|
sH[cc]=np.maximum(0.0,fac)
|
||
|
cc=cc+1
|
||
|
# Finalize assembly and convert to csc format
|
||
|
H=coo_matrix((sH,(iH,jH)),shape=(nelx*nely,nelx*nely)).tocsc()
|
||
|
Hs=H.sum(1)
|
||
|
# BC's and support
|
||
|
dofs=np.arange(2*(nelx+1)*(nely+1))
|
||
|
fixed=np.union1d(dofs[0:2*(nely+1):2],np.array([2*(nelx+1)*(nely+1)-1]))
|
||
|
free=np.setdiff1d(dofs,fixed)
|
||
|
# Solution and RHS vectors
|
||
|
f=np.zeros((ndof,1))
|
||
|
u=np.zeros((ndof,1))
|
||
|
# Set load
|
||
|
f[1,0]=-1
|
||
|
# Initialize plot and plot the initial design
|
||
|
plt.ion() # Ensure that redrawing is possible
|
||
|
fig,ax = plt.subplots()
|
||
|
im = ax.imshow(-xPhys.reshape((nelx,nely)).T, cmap='gray',\
|
||
|
interpolation='none',norm=colors.Normalize(vmin=-1,vmax=0))
|
||
|
fig.show()
|
||
|
# Set loop counter and gradient vectors
|
||
|
loop=0
|
||
|
change=1
|
||
|
dv = np.ones(nely*nelx)
|
||
|
dc = np.ones(nely*nelx)
|
||
|
ce = np.ones(nely*nelx)
|
||
|
while change>0.01 and loop<2000:
|
||
|
loop=loop+1
|
||
|
# Setup and solve FE problem
|
||
|
sK=((KE.flatten()[np.newaxis]).T*(Emin+(xPhys)**penal*(Emax-Emin))).flatten(order='F')
|
||
|
K = coo_matrix((sK,(iK,jK)),shape=(ndof,ndof)).tocsc()
|
||
|
# Remove constrained dofs from matrix
|
||
|
K = K[free,:][:,free]
|
||
|
# Solve system
|
||
|
u[free,0]=spsolve(K,f[free,0])
|
||
|
|
||
|
# print(f.shape, f)
|
||
|
# print(K.shape, K)
|
||
|
# print(f[free,0])
|
||
|
# print(u.shape, u)
|
||
|
|
||
|
# Objective and sensitivity
|
||
|
ce[:] = (np.dot(u[edofMat].reshape(nelx*nely,8),KE) * u[edofMat].reshape(nelx*nely,8) ).sum(1)
|
||
|
obj=( (Emin+xPhys**penal*(Emax-Emin))*ce ).sum()
|
||
|
dc[:]=(-penal*xPhys**(penal-1)*(Emax-Emin))*ce
|
||
|
dv[:] = np.ones(nely*nelx)
|
||
|
# Sensitivity filtering:
|
||
|
if ft==0:
|
||
|
dc[:] = np.asarray((H*(x*dc))[np.newaxis].T/Hs)[:,0] / np.maximum(0.001,x)
|
||
|
elif ft==1:
|
||
|
dc[:] = np.asarray(H*(dc[np.newaxis].T/Hs))[:,0]
|
||
|
dv[:] = np.asarray(H*(dv[np.newaxis].T/Hs))[:,0]
|
||
|
# Optimality criteria
|
||
|
xold[:]=x
|
||
|
(x[:],g)=oc(nelx,nely,x,volfrac,dc,dv,g)
|
||
|
# Filter design variables
|
||
|
if ft==0: xPhys[:]=x
|
||
|
elif ft==1: xPhys[:]=np.asarray(H*x[np.newaxis].T/Hs)[:,0]
|
||
|
# Compute the change by the inf. norm
|
||
|
change=np.linalg.norm(x.reshape(nelx*nely,1)-xold.reshape(nelx*nely,1),np.inf)
|
||
|
# Plot to screen
|
||
|
im.set_array(-xPhys.reshape((nelx,nely)).T)
|
||
|
fig.canvas.draw()
|
||
|
# Write iteration history to screen (req. Python 2.6 or newer)
|
||
|
print("it.: {0} , obj.: {1:.3f} Vol.: {2:.3f}, ch.: {3:.3f}".format(\
|
||
|
loop,obj,(g+volfrac*nelx*nely)/(nelx*nely),change))
|
||
1 year ago
|
|
||
|
|
||
|
np.save('results/top88_' + mod_idx + '_xPhys_' + str(nelx) + '_' + str(nely) + '.npy', xPhys.reshape((nelx,nely)).T)
|
||
|
np.save('results/top88_' + mod_idx + '_u_' + str(nelx) + '_' + str(nely) + '.npy', u)
|
||
|
plt.savefig('results/top88_' + mod_idx + '_img_' + str(nelx) + '_' + str(nely) + '.jpg')
|
||
|
|
||
|
# plt.show()
|
||
|
|
||
1 year ago
|
print(u.reshape(nelx+1,nely+1,2))
|
||
|
|
||
|
# Make sure the plot stays and that the shell remains
|
||
1 year ago
|
np.save('results/top88_' + mod_idx + '_xPhys_' + str(nelx) + '_' + str(nely) + '.npy', xPhys.reshape((nelx,nely)).T)
|
||
|
np.save('results/top88_' + mod_idx + '_u_' + str(nelx) + '_' + str(nely) + '.npy', u)
|
||
|
plt.savefig('results/top88_' + mod_idx + '_img_' + str(nelx) + '_' + str(nely) + '.jpg')
|
||
1 year ago
|
plt.show()
|
||
|
print("Press any key...")
|
||
|
#element stiffness matrix
|
||
|
def lk():
|
||
|
E=1
|
||
|
nu=0.3
|
||
|
k=np.array([1/2-nu/6,1/8+nu/8,-1/4-nu/12,-1/8+3*nu/8,-1/4+nu/12,-1/8-nu/8,nu/6,1/8-3*nu/8])
|
||
|
KE = E/(1-nu**2)*np.array([ [k[0], k[1], k[2], k[3], k[4], k[5], k[6], k[7]],
|
||
|
[k[1], k[0], k[7], k[6], k[5], k[4], k[3], k[2]],
|
||
|
[k[2], k[7], k[0], k[5], k[6], k[3], k[4], k[1]],
|
||
|
[k[3], k[6], k[5], k[0], k[7], k[2], k[1], k[4]],
|
||
|
[k[4], k[5], k[6], k[7], k[0], k[1], k[2], k[3]],
|
||
|
[k[5], k[4], k[3], k[2], k[1], k[0], k[7], k[6]],
|
||
|
[k[6], k[3], k[4], k[1], k[2], k[7], k[0], k[5]],
|
||
|
[k[7], k[2], k[1], k[4], k[3], k[6], k[5], k[0]] ]);
|
||
|
return (KE)
|
||
|
# Optimality criterion
|
||
|
def oc(nelx,nely,x,volfrac,dc,dv,g):
|
||
|
l1=0
|
||
|
l2=1e9
|
||
|
move=0.2
|
||
|
# reshape to perform vector operations
|
||
|
xnew=np.zeros(nelx*nely)
|
||
|
while (l2-l1)/(l1+l2)>1e-3:
|
||
|
lmid=0.5*(l2+l1)
|
||
|
xnew[:]= np.maximum(0.0,np.maximum(x-move,np.minimum(1.0,np.minimum(x+move,x*np.sqrt(-dc/dv/lmid)))))
|
||
|
gt=g+np.sum((dv*(xnew-x)))
|
||
|
if gt>0 :
|
||
|
l1=lmid
|
||
|
else:
|
||
|
l2=lmid
|
||
|
return (xnew,gt)
|
||
|
# The real main driver
|
||
|
if __name__ == "__main__":
|
||
|
# Default input parameters
|
||
1 year ago
|
mod_idx='mod4'
|
||
1 year ago
|
nelx=180
|
||
|
nely=60
|
||
|
volfrac=0.4
|
||
|
rmin=5.4
|
||
|
penal=3.0
|
||
|
ft=1 # ft==0 -> sens, ft==1 -> dens
|
||
|
import sys
|
||
|
if len(sys.argv)>1: nelx =int(sys.argv[1])
|
||
|
if len(sys.argv)>2: nely =int(sys.argv[2])
|
||
|
if len(sys.argv)>3: volfrac=float(sys.argv[3])
|
||
|
if len(sys.argv)>4: rmin =float(sys.argv[4])
|
||
|
if len(sys.argv)>5: penal =float(sys.argv[5])
|
||
|
if len(sys.argv)>6: ft =int(sys.argv[6])
|
||
1 year ago
|
top88(nelx,nely,volfrac,penal,rmin,ft,mod_idx)
|