Integration of gauss map, osculating toroidal patches, loop detection and C2 judgement to figure out the singular or loop intersection.
 
 

392 lines
14 KiB

#include "QList"
#include "SingularityJudger.h"
#include "bvh.h"
#include "include/real.h"
#include "reader.hpp"
#include "utils.h"
#include <QRegularExpression>
#include <QString>
#include <array>
#include <iostream>
array2<glm::vec3> getPtsFromStr(QString srfData);
void printCtrPtsAsQuadruples(const RationalSurface<real> &s);
void sampleTimeTest(const RationalSurface<real> &s_, int sampleLevel) {
// 由于ParaSolid那边曲面参数为double类型,这里最好也是double类型(控制变量)
RationalSurface<real> s;
vector<real> knots_u(s_.knots_u.size());
vector<real> knots_v(s_.knots_v.size());
array2<real> weights(s_.weights.rows(), s_.weights.cols());
array2<glm::vec<3, real>> control_points(s_.control_points.rows(),
s_.control_points.cols());
for (int i = 0; i < s_.knots_u.size(); i++)
knots_u[i] = (real)s_.knots_u[i];
for (int i = 0; i < s_.knots_v.size(); i++)
knots_v[i] = (real)s_.knots_v[i];
for (int i = 0; i < s_.weights.rows(); i++) {
for (int j = 0; j < s_.weights.cols(); j++) {
weights(i, j) = (real)s_.weights(i, j);
}
}
for (int i = 0; i < s_.control_points.rows(); i++) {
for (int j = 0; j < s_.control_points.cols(); j++) {
control_points(i, j).x = (real)s_.control_points(i, j).x;
control_points(i, j).y = (real)s_.control_points(i, j).y;
control_points(i, j).z = (real)s_.control_points(i, j).z;
}
}
s.knots_u = knots_u;
s.knots_v = knots_v;
s.weights = weights;
s.control_points = control_points;
s.degree_u = s_.degree_u;
s.degree_v = s_.degree_v;
auto sampleCnt = int(pow(2, sampleLevel - 1) + 1);
auto s_first_u = *(s.knots_u.begin());
auto s_first_v = *(s.knots_v.begin());
auto s_step_u = (*(s.knots_u.end() - 1) - s_first_u) / real(sampleCnt - 1);
auto s_step_v = (*(s.knots_v.end() - 1) - s_first_v) / real(sampleCnt - 1);
// 为了分别测试赋值和求梯度的时间,这里把它们分开写了
auto startMomEval = std::chrono::steady_clock::now();
for (int i = 0; i < sampleCnt; i++) {
auto u = s_first_u + s_step_u * real(i);
for (int j = 0; j < sampleCnt; j++) {
auto v = s_first_v + s_step_v * real(j);
auto eval = tinynurbs::surfacePoint(s, u, v);
// printf("(%d, %d) --> (%g, %g, %g)\n", i, j, eval.x,
// eval.y,
// eval.z);
}
}
auto endMomEval = std::chrono::steady_clock::now();
printf("time cost of evaluation: %lf ms\n",
std::chrono::duration<real, std::milli>(endMomEval - startMomEval)
.count());
auto startMomDer = std::chrono::steady_clock::now();
for (int i = 0; i < sampleCnt; i++) {
auto u = s_first_u + s_step_u * real(i);
for (int j = 0; j < sampleCnt; j++) {
auto v = s_first_v + s_step_v * real(j);
auto der = tinynurbs::surfaceDerivatives(s, 1, u, v);
// if(der(0, 0) == res.evaluation[i][j])
cout << "amazing" << endl;
// else cout<<"what??? ("<<res.evaluation[i][j].x<<"
// "<<res.evaluation[i][j].y<<"
// "<<res.evaluation[i][j].z<<") |
// ("<<der(0, 0).x<<" "<<der(0, 0).y<<" "<<der(0,
// 0).z<<")"<<endl; res.tangent_u[i][j] = der(1, 0);
// res.tangent_v[i][j] = der(0, 1);
}
}
auto endMomDer = std::chrono::steady_clock::now();
printf(
"time cost of derivatives: %lf ms\n",
std::chrono::duration<real, std::milli>(endMomDer - startMomDer).count());
auto startMomScdDer = std::chrono::steady_clock::now();
for (int i = 0; i < sampleCnt; i++) {
auto u = s_first_u + s_step_u * real(i);
for (int j = 0; j < sampleCnt; j++) {
auto v = s_first_v + s_step_v * real(j);
auto der = tinynurbs::surfaceDerivatives(s, 2, u, v);
}
}
auto endMomScdDer = std::chrono::steady_clock::now();
printf("time cost of second derivatives: %lf ms\n",
std::chrono::duration<real, std::milli>(endMomScdDer - startMomScdDer)
.count());
}
void sampleTimeTestNonRational(const RationalSurface<real> &s_,
int sampleLevel) {
// 由于ParaSolid那边曲面参数为real类型,这里也要保证是real类型(控制变量)
Surface<real> s;
vector<real> knots_u(s_.knots_u.size());
vector<real> knots_v(s_.knots_v.size());
array2<glm::vec<3, real>> control_points(s_.control_points.rows(),
s_.control_points.cols());
for (int i = 0; i < s_.knots_u.size(); i++)
knots_u[i] = (real)s_.knots_u[i];
for (int i = 0; i < s_.knots_v.size(); i++)
knots_v[i] = (real)s_.knots_v[i];
for (int i = 0; i < s_.control_points.rows(); i++) {
for (int j = 0; j < s_.control_points.cols(); j++) {
control_points(i, j).x = (real)s_.control_points(i, j).x;
control_points(i, j).y = (real)s_.control_points(i, j).y;
control_points(i, j).z = (real)s_.control_points(i, j).z;
}
}
s.knots_u = knots_u;
s.knots_v = knots_v;
s.control_points = control_points;
s.degree_u = s_.degree_u;
s.degree_v = s_.degree_v;
auto sampleCnt = int(pow(2, sampleLevel - 1) + 1);
auto s_first_u = *(s.knots_u.begin());
auto s_first_v = *(s.knots_v.begin());
auto s_step_u = (*(s.knots_u.end() - 1) - s_first_u) / real(sampleCnt - 1);
auto s_step_v = (*(s.knots_v.end() - 1) - s_first_v) / real(sampleCnt - 1);
// 为了分别测试赋值和求梯度的时间,这里把它们分开写了
printCtrPtsAsQuadruples(s);
auto startMomEval = std::chrono::steady_clock::now();
for (int i = 0; i < sampleCnt; i++) {
auto u = s_first_u + s_step_u * real(i);
for (int j = 0; j < sampleCnt; j++) {
auto v = s_first_v + s_step_v * real(j);
auto eval = tinynurbs::surfacePoint(s, u, v);
// res.evaluation[i][j] = tinynurbs::surfacePoint(s, u, v);
}
}
auto endMomEval = std::chrono::steady_clock::now();
printf("time cost of evaluation: %lf ms\n",
std::chrono::duration<real, std::milli>(endMomEval - startMomEval)
.count());
auto startMomDer = std::chrono::steady_clock::now();
for (int i = 0; i < sampleCnt; i++) {
auto u = s_first_u + s_step_u * real(i);
for (int j = 0; j < sampleCnt; j++) {
auto v = s_first_v + s_step_v * real(j);
auto der = tinynurbs::surfaceDerivatives(s, 1, u, v);
// if(der(0, 0) == res.evaluation[i][j])
cout << "amazing" << endl;
// else cout<<"what??? ("<<res.evaluation[i][j].x<<"
// "<<res.evaluation[i][j].y<<"
// "<<res.evaluation[i][j].z<<") |
// ("<<der(0, 0).x<<" "<<der(0, 0).y<<" "<<der(0,
// 0).z<<")"<<endl; res.tangent_u[i][j] = der(1, 0);
// res.tangent_v[i][j] = der(0, 1);
}
}
auto endMomDer = std::chrono::steady_clock::now();
printf(
"time cost of derivatives: %lf ms\n",
std::chrono::duration<real, std::milli>(endMomDer - startMomDer).count());
auto startMomScdDer = std::chrono::steady_clock::now();
for (int i = 0; i < sampleCnt; i++) {
auto u = s_first_u + s_step_u * real(i);
for (int j = 0; j < sampleCnt; j++) {
auto v = s_first_v + s_step_v * real(j);
auto der = tinynurbs::surfaceDerivatives(s, 2, u, v);
}
}
auto endMomScdDer = std::chrono::steady_clock::now();
printf("time cost of second derivatives: %lf ms\n",
std::chrono::duration<real, std::milli>(endMomScdDer - startMomScdDer)
.count());
}
typedef array<int, 2> int2;
typedef array<int, 4> int4;
int dirs[4][2] = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}};
// void dfs(
// const map<pair<int, int>, set<pair<int, int>>> &pairMap,
// // unordered_map<pair<int, int>, char> &book,
// set<pair<int, int>> &book,
// // vector<vector<pair<pair<int, int>, pair<int, int>>>>
// &boxGroups, vector<vector<pair<int, int>>> &boxGroups, int x, int y, int
// iOfGroup) {
// // book[{x, y}] = 1;
// // book.insert(pair<pair<int, int>, char>(pair<int, int>(x, y), 1));
// book.insert({x, y});
// boxGroups[iOfGroup].emplace_back(pair<int, int>(x, y));
// for (auto dir : dirs) {
// auto nx = x + dir[0], ny = y + dir[1];
// if (book.find({nx, ny}) != book.end() ||
// pairMap.find({nx, ny}) == pairMap.end())
// continue;
// dfs(pairMap, book, boxGroups, nx, ny, iOfGroup);
// }
// }
// book: 0: no pair, -1: has pair but not visited, positive int: has pair and
// grouped to the group {book-1} (the bookth group)
void dfsGroupingByOnlyOneSrf(vector<vector<int>> &book,
vector<vector<int2>> &boxGroups, int x, int y,
int iOfGroup) {
book[x][y] = iOfGroup + 1;
boxGroups[iOfGroup].emplace_back(int2{x, y});
int sizeX = book.size(), sizeY = book[0].size();
for (auto dir : dirs) {
auto nx = x + dir[0], ny = y + dir[1];
if (nx < 0 || nx >= sizeX || ny < 0 || ny >= sizeY)
continue;
if (book[nx][ny] != -1)
continue;
dfsGroupingByOnlyOneSrf(book, boxGroups, nx, ny, iOfGroup);
}
}
void testGroupingByOnlyOneSrf(
const vector<pair<pair<int, int>, pair<int, int>>> &pairs, int boxCntDir) {
utils::Timer timerGrouping(
"Grouping boxes filtered by BVH traversal using only the first surface.");
vector<vector<int>> book(boxCntDir, vector<int>(boxCntDir, 0));
vector<vector<int2>> boxGroups;
for (const auto &pair : pairs) {
const auto &boxIdx1 = pair.first;
book[boxIdx1.first][boxIdx1.second] = -1;
}
// map<int2, vector<int2>> box1ToBox2;
// for (const auto &pair : pairs) {
// const auto &boxIdx1 = pair.first;
// const auto &boxIdx2 = pair.second;
// box1ToBox2[{boxIdx1.first, boxIdx1.second}].emplace_back(
// int2{boxIdx2.first, boxIdx2.second});
// }
int groupNum = 0;
for (int i = 0; i < boxCntDir; i++) {
for (int j = 0; j < boxCntDir; j++) {
if (book[i][j] == -1) {
boxGroups.emplace_back();
dfsGroupingByOnlyOneSrf(book, boxGroups, i, j, groupNum++);
}
}
}
// from box groups to pair groups
vector<vector<int4>> pairGroups(groupNum);
for (const auto &pair : pairs) {
const auto &boxIdx1 = pair.first;
const auto &boxIdx2 = pair.second;
int groupIdx = book[boxIdx1.first][boxIdx1.second] - 1;
if (groupIdx < 0)
continue;
pairGroups[groupIdx].emplace_back(
int4{boxIdx1.first, boxIdx1.second, boxIdx2.first, boxIdx2.second});
}
timerGrouping.end();
printf("group num: %d\n", groupNum);
for (int i = 0; i < groupNum; i++) {
printf("number of patches of srf1 in group %d is: %lld", i,
boxGroups[i].size());
// for (const auto &box : boxGroups[i]) {
// printf("(%d, %d) ", box[0], box[1]);
// }
printf("\n");
}
for (int i = 0; i < groupNum; i++) {
printf("number of pairs in group %d is: %lld\n", i, pairGroups[i].size());
}
set<int2> aNums;
for (const auto &pair : pairs) {
const auto &firstBox = pair.first;
aNums.insert({firstBox.first, firstBox.second});
}
printf("Num of patch of surface 1: %lld\n", aNums.size());
}
int main() {
int level = 7;
printf("level: %d, sample cnt: %d * %d\n", level, int(pow(2, level - 1)),
int(pow(2, level - 1)));
// auto [s, f] = Reader::readSurfaces(R"(intersectTest\case17\surfaces.txt)");
auto s =
Reader::readSurface(R"(intersectTest\zyr_jh23_12_21\case2\surf_A.txt)");
auto f =
Reader::readSurface(R"(intersectTest\zyr_jh23_12_21\case2\surf_B.txt)");
// ====================== 测试 =======================
vector<vector<glm::vec3>> s_evaluation;
vector<vector<glm::vec3>> f_evaluation;
// 曲面s和f的切向量。zd*-sznmj
vector<vector<glm::vec3>> s_tangent_v;
vector<vector<glm::vec3>> f_tangent_u;
const vector<vector<glm::vec3>> f_tangent_v;
// 曲面s和f的法向量
const vector<vector<glm::vec3>> s_normal;
const vector<vector<glm::vec3>> f_normal;
// sampleTimeTestNonRational(s, level);
// sampleTimeTest(s, level);
auto mesh1 = SrfMesh(s, level);
auto mesh2 = SrfMesh(f, level);
BVH bvh1(mesh1.evaluation);
BVH bvh2(mesh2.evaluation);
bvh1.build();
bvh2.build();
vector<pair<pair<int, int>, pair<int, int>>> intersectBoxPairs =
getOverlapLeafNodes(bvh1, bvh2); // [{{u1, v1}, {u2, v2}}]
printf("box pairs size: %lld\n", intersectBoxPairs.size());
/**
* 测试对bvh结果用dfs
*/
// utils::Timer timerGrouping("Grouping boxes filtered by BVH traversal.");
// map<pair<int, int>, set<pair<int, int>>> pairMap;
// for (const auto &boxPair : intersectBoxPairs) {
// pairMap[boxPair.first].insert(boxPair.second);
// }
// // vector<vector<pair<pair<int, int>, pair<int, int>>>> groups;
// vector<vector<pair<int, int>>> groups;
// // unordered_map<pair<int, int>, char> book;
// set<pair<int, int>> book;
// int groupNum = 0;
// for (auto boxPair : intersectBoxPairs) {
// if (book.find(boxPair.first) != book.end())
// continue;
// groups.emplace_back();
// dfs(pairMap, book, groups, boxPair.first.first, boxPair.first.second,
// groupNum++);
// }
// timerGrouping.end();
/**
* end of test
*/
testGroupingByOnlyOneSrf(intersectBoxPairs, int(pow(2, level - 1)));
utils::Timer timerSJ("Winding number detection");
SingularityJudger singularityJudger(s, f, mesh1, mesh2);
timerSJ.end();
pair<int, int> cellIdxFullRange = {0, pow(2, level - 1) - 1};
auto cellsWithCriticalPts = singularityJudger.judge(
intersectBoxPairs, cellIdxFullRange, cellIdxFullRange, cellIdxFullRange,
cellIdxFullRange);
// ==================
// 测试对整个曲面,gauss能排除多少(或保留多少)==================
// GaussMap gaussMap1(mesh1.normal);
// GaussMap gaussMap2(mesh2.normal);
// gaussMap1.build();
// gaussMap2.build();
// auto pairs = getOverlapLeafNodes(gaussMap1, gaussMap2);
// printf("Gauss Map: keep %lld samples in totally %lld boxes\n",
// pairs.size(),
// mesh1.normal.size() * mesh1.normal[0].size() *
// mesh2.normal.size() * mesh2.normal[0].size());
return 0;
}
void printCtrPtsAsQuadruples(const RationalSurface<real> &s) {
cout << endl;
for (int i = 0; i < s.control_points.rows(); i++) {
for (int j = 0; j < s.control_points.cols(); j++) {
auto pt = s.control_points(i, j);
auto w = s.weights(i, j);
cout << pt.x * w << ", " << pt.y * w << ", " << pt.z * w << ", "
<< s.weights(i, j) << ", " << endl;
}
}
cout << s.control_points.rows() * s.control_points.cols() * 4 << endl;
}