You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
308 lines
11 KiB
308 lines
11 KiB
#pragma once
|
|
|
|
#include "common.hpp"
|
|
#include "real.hpp"
|
|
#include <utility>
|
|
#include "vec.hpp"
|
|
#include "line.hpp"
|
|
|
|
class ISolid {
|
|
public:
|
|
virtual ~ISolid() = default;
|
|
|
|
virtual real sdf(const Vec3 &p) = 0;
|
|
};
|
|
|
|
Vec2 get2DRepOf3DPt(const Vec3 &pt3D, const Vec3 &u, const Vec3 &v, const Vec3 &localO) {
|
|
Vec3 OP = pt3D - localO;
|
|
return {OP.dot(u), OP.dot(v)};
|
|
}
|
|
|
|
Vec2 get2DRepOf3DDir(const Vec3 &dir, const Vec3 &u, const Vec3 &v) {
|
|
return Vec2{dir.dot(u), dir.dot(v)}.normalize();
|
|
}
|
|
|
|
class IExtrudedSolid : public ISolid {
|
|
public:
|
|
Polyline _profile; // TODO: may be replaced by const ref to profile
|
|
real _rScale;
|
|
|
|
public:
|
|
IExtrudedSolid(Polyline profile, real rScale) : _profile(std::move(profile)), _rScale(rScale) {}
|
|
};
|
|
|
|
/**
|
|
* calculate winding number of a point w.r.t. a segment ab
|
|
*/
|
|
real unsignedWindingNumberSegment(const Vec3 &p, const Vec3 &a, const Vec3 &b,
|
|
const Vec3 &refNormal) {
|
|
Vec3 pa = a - p;
|
|
Vec3 pb = b - p;
|
|
return std::acos(std::clamp(pa.dot(pb) / (pa.norm() * pb.norm()), static_cast<real>(-1.),
|
|
static_cast<real>(1.)))
|
|
/ (std::numbers::pi * 2);
|
|
}
|
|
|
|
class ExtrudedSolidPolyline : public IExtrudedSolid {
|
|
private:
|
|
Polyline _axis;
|
|
Pt2Array _localProfile2D;
|
|
std::vector<CircularArc<Vec2>> _localArcs2d;
|
|
// Pt2Array _localCircleCenter2D;
|
|
// Pt2Array _localInCircleDir;
|
|
|
|
public:
|
|
ExtrudedSolidPolyline(Polyline profile, Polyline axis, real rScale)
|
|
: IExtrudedSolid(std::move(profile), rScale), _axis(std::move(axis)) {
|
|
assert(_profile.isClosed());
|
|
// TODO: project profile at st point to 2D
|
|
Vec3 T = _axis.der1(0).normalize();
|
|
Vec3 N = _axis.der2(0).normalize();
|
|
Vec3 B = T.cross(N);
|
|
Vec3 Q = _axis.eval(0);
|
|
int segCount = _profile.getPoints().size();
|
|
_localProfile2D.resize(segCount);
|
|
_localArcs2d.resize(segCount);
|
|
// _localInCircleDir.resize(segCount);
|
|
// _localCircleCenter2D.resize(segCount);
|
|
for (int i = 0; i < segCount; ++i) {
|
|
_localProfile2D[i] = get2DRepOf3DPt(_profile.getPoints()[i] - Q, N, B, Q);
|
|
auto &arc2d = _localArcs2d[i];
|
|
const auto &arc3d = _profile.getCircularArcs()[i];
|
|
arc2d.center = get2DRepOf3DPt(arc3d.center - Q, N, B, Q);
|
|
arc2d.inCircleDir = get2DRepOf3DDir(arc3d.inCircleDir, N, B);
|
|
arc2d.radius = arc3d.radius;
|
|
}
|
|
}
|
|
|
|
real sdf(const Vec3 &p) override {
|
|
ClosestDescOnSeg closestDesc = _axis.getClosestParam(p);
|
|
// TNB coordinate system
|
|
auto t = closestDesc.t;
|
|
Vec3 T = _axis.der1(t).normalize();
|
|
Vec3 N = _axis.der2(t).normalize();
|
|
Vec3 B = T.cross(N);
|
|
Vec3 Q = _axis.eval(t);
|
|
Vec3 QP = p - Q;
|
|
auto p2D = get2DRepOf3DPt(QP, N, B, Q);
|
|
// TODO: to test if p2D is in _localProfile2D
|
|
// for (auto i = 0; i < _localProfile2D.size(); ++i) {
|
|
// }
|
|
PtBoundaryRelation ptProfileRelation = getPtProfileRelation(p2D);
|
|
if (ptProfileRelation == OnBoundary) {
|
|
return 0; // TODO: 判断OnBoundary的过程可以加一点容差
|
|
}
|
|
ClosestDescOnSeg closestDescOnProfile = distance2Profile2D(p2D);
|
|
return closestDescOnProfile.dis * static_cast<int>(ptProfileRelation);
|
|
}
|
|
|
|
private:
|
|
/**
|
|
* in + in = out
|
|
* in + out = in
|
|
* out + in = in
|
|
* out + out = out
|
|
*/
|
|
PtBoundaryRelation getPtProfileRelation(const Vec2 &p2D) {
|
|
assert(_profile.isClosed());
|
|
|
|
int segCount = _profile.getBugles().size();
|
|
// 先判断是否在outline上
|
|
// 顺便判断点-扇的位置关系
|
|
bool inFan = false;
|
|
int onLinesegButHasBugle = -1;
|
|
for (int i = 0; i < segCount; ++i) {
|
|
const Vec2 &a = _localProfile2D[i];
|
|
const Vec2 &b = _localProfile2D[(i + 1) % segCount];
|
|
if (_profile.getBugles()[i] == 0) {
|
|
//line segment
|
|
if (isPointOnSegment(p2D, a, b)) {
|
|
return OnBoundary;
|
|
}
|
|
continue;
|
|
}
|
|
if (isPointOnSegment(p2D, a, b)) {
|
|
onLinesegButHasBugle = i;
|
|
break;
|
|
}
|
|
const auto &arc = _profile.getCircularArcs()[i];
|
|
real po = (p2D - _localArcs2d[i].center).norm();
|
|
if ((p2D - a).dot(_localArcs2d[i].inCircleDir) > 0) {
|
|
if (po == arc.radius) {
|
|
return OnBoundary;
|
|
}
|
|
if (po < arc.radius) {
|
|
inFan = true;
|
|
break;
|
|
}
|
|
} else {
|
|
if (po <= arc.radius) {
|
|
inFan = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// 判断点-直线多边形的关系
|
|
const auto ptInPolygon = [&](const Vec2 &p) {
|
|
int intersectionCount = 0;
|
|
// int onSegIdx = -1;
|
|
constexpr int numRays = 3; // 射线数量
|
|
int majorityIn = 0; // 在多边形内的射线计数
|
|
int majorityOut = 0; // 在多边形外的射线计数
|
|
for (int rayIdx = 0; rayIdx < numRays; ++rayIdx) {
|
|
double angle = (2.0 * std::numbers::pi * rayIdx) / numRays;
|
|
Vec2 rayDir(cos(angle), sin(angle));
|
|
int crossings = 0;
|
|
|
|
for (int i = 0; i < segCount; ++i) {
|
|
const Vec2 &a = _localProfile2D[i];
|
|
const Vec2 &b = _localProfile2D[(i + 1) % segCount];
|
|
assert(isPointOnSegment(p, a, b));
|
|
// if (isPointOnSegment(p2D, a, b))
|
|
// {
|
|
// onSegIdx = i;
|
|
// break;
|
|
// }
|
|
// 使用向量方法计算射线和边的交点
|
|
double dx1 = b[0] - a[0];
|
|
double dy1 = b[1] - a[1];
|
|
double dx2 = rayDir[0];
|
|
double dy2 = rayDir[1];
|
|
double determinant = dx1 * dy2 - dy1 * dx2;
|
|
|
|
// 如果determinant为0,则射线和边平行,不计算交点
|
|
if (isEqual(determinant, 0))
|
|
continue;
|
|
|
|
double t1 = ((p[0] - a[0]) * dy2 - (p[1] - a[1]) * dx2) / determinant;
|
|
double t2 = ((p[0] - a[0]) * dy1 - (p[1] - a[1]) * dx1) / determinant;
|
|
|
|
// 检查交点是否在边上(0 <= t1 <= 1)且射线上(t2 >= 0)
|
|
if (t1 >= 0 && t1 <= 1 && t2 >= 0) {
|
|
crossings++;
|
|
}
|
|
}
|
|
if (crossings % 2 == 0) {
|
|
majorityOut++;
|
|
} else {
|
|
majorityIn++;
|
|
}
|
|
}
|
|
return majorityIn > majorityOut;
|
|
};
|
|
|
|
if (onLinesegButHasBugle != -1) {
|
|
// 需要特殊考虑的情况
|
|
// 从p2D向inCircle方向前进一小步
|
|
Vec2 samplePt = p2D
|
|
+ _localArcs2d[onLinesegButHasBugle].center
|
|
* std::numeric_limits<real>::epsilon() * 1e6;
|
|
return !ptInPolygon(samplePt) ? Inside : Outside; // 取反
|
|
}
|
|
return ptInPolygon(p2D) ^ inFan ? Inside : Outside;
|
|
// TODO: 返回on的情况
|
|
}
|
|
|
|
ClosestDescOnSeg distance2Profile2D(const Vec2 &p2D) {
|
|
// TODO: 2D 下点到圆弧的距离应该可以直接算,不用这么迭代!
|
|
assert(_profile.isClosed());
|
|
ClosestDescOnSeg res{};
|
|
for (int i = 0; i < _localArcs2d.size(); ++i) {
|
|
auto disDesc =
|
|
distance2Arc2D(p2D, _localProfile2D[i],
|
|
_localProfile2D[(i + 1) % _localArcs2d.size()], _localArcs2d[i]);
|
|
if (res.dis > disDesc.dis) {
|
|
res.dis = disDesc.dis;
|
|
res.t = i + disDesc.t;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
ClosestDescOnSeg distance2Arc2D(const Vec2 &p2D, const Vec2 &a, const Vec2 &b,
|
|
const CircularArc<Vec2> &arc) {
|
|
const Vec2 ¢er = arc.center;
|
|
Vec2 op = p2D - center;
|
|
Vec2 q = center + arc.radius * op.normalize(); // closest pt on circle
|
|
Vec2 oq = q - center;
|
|
Vec2 oa = a - center;
|
|
// 判断q是否在弧上
|
|
if ((q - a).dot(arc.inCircleDir) > 0) {
|
|
// 计算参数
|
|
real normMulti = arc.radius * oq.norm();
|
|
real cosTheta = (oa).dot(oq) / normMulti;
|
|
real sinTheta = (oa).cross(oq) / normMulti;
|
|
return {atan2(sinTheta, cosTheta), (p2D - q).norm()};
|
|
}
|
|
|
|
real paDis = (a - p2D).norm();
|
|
real pbDis = (b - p2D).norm();
|
|
if (paDis < pbDis)
|
|
return {0, paDis};
|
|
return {1, pbDis};
|
|
}
|
|
|
|
bool isOn2DPolyline(const Vec2 &p2D) {
|
|
int segCount = _profile.getBugles().size();
|
|
for (int i = 0; i < segCount; ++i) {
|
|
const Vec2 &a = _localProfile2D[i];
|
|
const Vec2 &b = _localProfile2D[(i + 1) % segCount];
|
|
if (_profile.getBugles()[i] == 0) {
|
|
//line segment
|
|
if (isPointOnSegment(p2D, a, b)) {
|
|
return true;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool isPointOnSegment(const Vec2 p, const Vec2 &a, const Vec2 &b) {
|
|
// check collinearity
|
|
double crossProduct = (p[1] - a[1]) * (b[0] - a[0]) - (p[0] - a[0]) * (b[1] - a[1]);
|
|
if (!isEqual(crossProduct, 0))
|
|
return false; // Not collinear
|
|
|
|
// Check if point is within segment bounds
|
|
return (p[0] >= std::min(a[0], b[0]) && p[0] <= std::max(a[0], b[0])
|
|
&& p[1] >= std::min(a[1], b[1]) && p[1] <= std::max(a[1], b[1]));
|
|
}
|
|
|
|
// real wnCircularArc(
|
|
// const Vec3 &p, const Vec3 &a, const Vec3 &b, const Vec3 &plgNormal, const Polyline::CircularArc &arc, int dir)
|
|
// {
|
|
// Vec3 pa = a - p;
|
|
// Vec3 pb = b - p;
|
|
// real wn =
|
|
// std::acos(std::clamp(pa.dot(pb) / (pa.norm() * pb.norm()), static_cast<real>(-1.), static_cast<real>(1.))) /
|
|
// (std::numbers::pi * 2);
|
|
// auto inOutCircle = arc.inCircleCheck(p);
|
|
// if (inOutCircle == PtBoundaryRelation::Outside || pa.cross(pb).dot(plgNormal) < 0)
|
|
// {
|
|
// // outside
|
|
// // pa.cross(pb).dot(plgNormal) 不会 == 0
|
|
// return -wn * dir;
|
|
// }
|
|
// if (inOutCircle == PtBoundaryRelation::Inside)
|
|
// {
|
|
// return wn * dir;
|
|
// }
|
|
|
|
// return 0;
|
|
// }
|
|
|
|
// Vec2 eval2DProfile(real param)
|
|
// {
|
|
// int seg = static_cast<int>(param);
|
|
// real tOnSeg = param - seg;
|
|
// const auto &arc = circularArcs[seg];
|
|
// real phi = tOnSeg * arc.theta;
|
|
// return arc.center + arc.radius * (arc.u * std::cos(phi) + arc.v * std::sin(phi));
|
|
// }
|
|
};
|
|
|
|
class ExtrudedSolidPolynomialLine : public IExtrudedSolid {
|
|
protected:
|
|
PolynomialLine _axis;
|
|
};
|
|
|