#pragma once #include "common.hpp" #include "real.hpp" #include #include "vec.hpp" #include "line.hpp" class ISolid { public: virtual ~ISolid() = default; virtual real sdf(const Vec3 &p) = 0; }; Vec2 get2DRepOf3DPt(const Vec3 &pt3D, const Vec3 &u, const Vec3 &v, const Vec3 &localO) { Vec3 OP = pt3D - localO; return {OP.dot(u), OP.dot(v)}; } Vec2 get2DRepOf3DDir(const Vec3 &dir, const Vec3 &u, const Vec3 &v) { return Vec2{dir.dot(u), dir.dot(v)}.normalize(); } class IExtrudedSolid : public ISolid { public: Polyline _profile; // TODO: may be replaced by const ref to profile real _rScale; public: IExtrudedSolid(Polyline profile, real rScale) : _profile(std::move(profile)), _rScale(rScale) {} }; /** * calculate winding number of a point w.r.t. a segment ab */ real unsignedWindingNumberSegment(const Vec3 &p, const Vec3 &a, const Vec3 &b, const Vec3 &refNormal) { Vec3 pa = a - p; Vec3 pb = b - p; return std::acos(std::clamp(pa.dot(pb) / (pa.norm() * pb.norm()), static_cast(-1.), static_cast(1.))) / (std::numbers::pi * 2); } class ExtrudedSolidPolyline : public IExtrudedSolid { private: Polyline _axis; Pt2Array _localProfile2D; std::vector> _localArcs2d; // Pt2Array _localCircleCenter2D; // Pt2Array _localInCircleDir; public: ExtrudedSolidPolyline(Polyline profile, Polyline axis, real rScale) : IExtrudedSolid(std::move(profile), rScale), _axis(std::move(axis)) { assert(_profile.isClosed()); // TODO: project profile at st point to 2D Vec3 T = _axis.der1(0).normalize(); Vec3 N = _axis.der2(0).normalize(); Vec3 B = T.cross(N); Vec3 Q = _axis.eval(0); int segCount = _profile.getPoints().size(); _localProfile2D.resize(segCount); _localArcs2d.resize(segCount); // _localInCircleDir.resize(segCount); // _localCircleCenter2D.resize(segCount); for (int i = 0; i < segCount; ++i) { _localProfile2D[i] = get2DRepOf3DPt(_profile.getPoints()[i] - Q, N, B, Q); auto &arc2d = _localArcs2d[i]; const auto &arc3d = _profile.getCircularArcs()[i]; arc2d.center = get2DRepOf3DPt(arc3d.center - Q, N, B, Q); arc2d.inCircleDir = get2DRepOf3DDir(arc3d.inCircleDir, N, B); arc2d.radius = arc3d.radius; } } real sdf(const Vec3 &p) override { ClosestDescOnSeg closestDesc = _axis.getClosestParam(p); // TNB coordinate system auto t = closestDesc.t; Vec3 T = _axis.der1(t).normalize(); Vec3 N = _axis.der2(t).normalize(); Vec3 B = T.cross(N); Vec3 Q = _axis.eval(t); Vec3 QP = p - Q; auto p2D = get2DRepOf3DPt(QP, N, B, Q); // TODO: to test if p2D is in _localProfile2D // for (auto i = 0; i < _localProfile2D.size(); ++i) { // } PtBoundaryRelation ptProfileRelation = getPtProfileRelation(p2D); if (ptProfileRelation == OnBoundary) { return 0; // TODO: 判断OnBoundary的过程可以加一点容差 } ClosestDescOnSeg closestDescOnProfile = distance2Profile2D(p2D); return closestDescOnProfile.dis * static_cast(ptProfileRelation); } private: /** * in + in = out * in + out = in * out + in = in * out + out = out */ PtBoundaryRelation getPtProfileRelation(const Vec2 &p2D) { assert(_profile.isClosed()); int segCount = _profile.getBugles().size(); // 先判断是否在outline上 // 顺便判断点-扇的位置关系 bool inFan = false; int onLinesegButHasBugle = -1; for (int i = 0; i < segCount; ++i) { const Vec2 &a = _localProfile2D[i]; const Vec2 &b = _localProfile2D[(i + 1) % segCount]; if (_profile.getBugles()[i] == 0) { //line segment if (isPointOnSegment(p2D, a, b)) { return OnBoundary; } continue; } if (isPointOnSegment(p2D, a, b)) { onLinesegButHasBugle = i; break; } const auto &arc = _profile.getCircularArcs()[i]; real po = (p2D - _localArcs2d[i].center).norm(); if ((p2D - a).dot(_localArcs2d[i].inCircleDir) > 0) { if (po == arc.radius) { return OnBoundary; } if (po < arc.radius) { inFan = true; break; } } else { if (po <= arc.radius) { inFan = true; break; } } } // 判断点-直线多边形的关系 const auto ptInPolygon = [&](const Vec2 &p) { int intersectionCount = 0; // int onSegIdx = -1; constexpr int numRays = 3; // 射线数量 int majorityIn = 0; // 在多边形内的射线计数 int majorityOut = 0; // 在多边形外的射线计数 for (int rayIdx = 0; rayIdx < numRays; ++rayIdx) { double angle = (2.0 * std::numbers::pi * rayIdx) / numRays; Vec2 rayDir(cos(angle), sin(angle)); int crossings = 0; for (int i = 0; i < segCount; ++i) { const Vec2 &a = _localProfile2D[i]; const Vec2 &b = _localProfile2D[(i + 1) % segCount]; assert(isPointOnSegment(p, a, b)); // if (isPointOnSegment(p2D, a, b)) // { // onSegIdx = i; // break; // } // 使用向量方法计算射线和边的交点 double dx1 = b[0] - a[0]; double dy1 = b[1] - a[1]; double dx2 = rayDir[0]; double dy2 = rayDir[1]; double determinant = dx1 * dy2 - dy1 * dx2; // 如果determinant为0,则射线和边平行,不计算交点 if (isEqual(determinant, 0)) continue; double t1 = ((p[0] - a[0]) * dy2 - (p[1] - a[1]) * dx2) / determinant; double t2 = ((p[0] - a[0]) * dy1 - (p[1] - a[1]) * dx1) / determinant; // 检查交点是否在边上(0 <= t1 <= 1)且射线上(t2 >= 0) if (t1 >= 0 && t1 <= 1 && t2 >= 0) { crossings++; } } if (crossings % 2 == 0) { majorityOut++; } else { majorityIn++; } } return majorityIn > majorityOut; }; if (onLinesegButHasBugle != -1) { // 需要特殊考虑的情况 // 从p2D向inCircle方向前进一小步 Vec2 samplePt = p2D + _localArcs2d[onLinesegButHasBugle].center * std::numeric_limits::epsilon() * 1e6; return !ptInPolygon(samplePt) ? Inside : Outside; // 取反 } return ptInPolygon(p2D) ^ inFan ? Inside : Outside; // TODO: 返回on的情况 } ClosestDescOnSeg distance2Profile2D(const Vec2 &p2D) { // TODO: 2D 下点到圆弧的距离应该可以直接算,不用这么迭代! assert(_profile.isClosed()); ClosestDescOnSeg res{}; for (int i = 0; i < _localArcs2d.size(); ++i) { auto disDesc = distance2Arc2D(p2D, _localProfile2D[i], _localProfile2D[(i + 1) % _localArcs2d.size()], _localArcs2d[i]); if (res.dis > disDesc.dis) { res.dis = disDesc.dis; res.t = i + disDesc.t; } } return res; } ClosestDescOnSeg distance2Arc2D(const Vec2 &p2D, const Vec2 &a, const Vec2 &b, const CircularArc &arc) { const Vec2 ¢er = arc.center; Vec2 op = p2D - center; Vec2 q = center + arc.radius * op.normalize(); // closest pt on circle Vec2 oq = q - center; Vec2 oa = a - center; // 判断q是否在弧上 if ((q - a).dot(arc.inCircleDir) > 0) { // 计算参数 real normMulti = arc.radius * oq.norm(); real cosTheta = (oa).dot(oq) / normMulti; real sinTheta = (oa).cross(oq) / normMulti; return {atan2(sinTheta, cosTheta), (p2D - q).norm()}; } real paDis = (a - p2D).norm(); real pbDis = (b - p2D).norm(); if (paDis < pbDis) return {0, paDis}; return {1, pbDis}; } bool isOn2DPolyline(const Vec2 &p2D) { int segCount = _profile.getBugles().size(); for (int i = 0; i < segCount; ++i) { const Vec2 &a = _localProfile2D[i]; const Vec2 &b = _localProfile2D[(i + 1) % segCount]; if (_profile.getBugles()[i] == 0) { //line segment if (isPointOnSegment(p2D, a, b)) { return true; } continue; } } } bool isPointOnSegment(const Vec2 p, const Vec2 &a, const Vec2 &b) { // check collinearity double crossProduct = (p[1] - a[1]) * (b[0] - a[0]) - (p[0] - a[0]) * (b[1] - a[1]); if (!isEqual(crossProduct, 0)) return false; // Not collinear // Check if point is within segment bounds return (p[0] >= std::min(a[0], b[0]) && p[0] <= std::max(a[0], b[0]) && p[1] >= std::min(a[1], b[1]) && p[1] <= std::max(a[1], b[1])); } // real wnCircularArc( // const Vec3 &p, const Vec3 &a, const Vec3 &b, const Vec3 &plgNormal, const Polyline::CircularArc &arc, int dir) // { // Vec3 pa = a - p; // Vec3 pb = b - p; // real wn = // std::acos(std::clamp(pa.dot(pb) / (pa.norm() * pb.norm()), static_cast(-1.), static_cast(1.))) / // (std::numbers::pi * 2); // auto inOutCircle = arc.inCircleCheck(p); // if (inOutCircle == PtBoundaryRelation::Outside || pa.cross(pb).dot(plgNormal) < 0) // { // // outside // // pa.cross(pb).dot(plgNormal) 不会 == 0 // return -wn * dir; // } // if (inOutCircle == PtBoundaryRelation::Inside) // { // return wn * dir; // } // return 0; // } // Vec2 eval2DProfile(real param) // { // int seg = static_cast(param); // real tOnSeg = param - seg; // const auto &arc = circularArcs[seg]; // real phi = tOnSeg * arc.theta; // return arc.center + arc.radius * (arc.u * std::cos(phi) + arc.v * std::sin(phi)); // } }; class ExtrudedSolidPolynomialLine : public IExtrudedSolid { protected: PolynomialLine _axis; };