// // Created by 14727 on 2022/11/7. // #include #include "NurbsEvaluator.cuh" #include "cstdio" #include "utils.h" __host__ NurbsSurface::Evaluator::Evaluator(std::vector>> controlPoints, std::vector knots_u, std::vector knots_v) { this->knots_u = std::move(knots_u); this->knots_v = std::move(knots_v); this->controlPoints = std::move(controlPoints); recordTime = false; } __host__ std::vector, std::vector>> NurbsSurface::Evaluator::calculate(int sampleCnt_u, int sampleCnt_v) { // 构造指向device的controlPoints const int pointsCntU = controlPoints.size(), pointsCntV = controlPoints[0].size(), pointSize = controlPoints[0][0].size(); const int pointsBytes = pointsCntU * pointsCntV * pointSize * sizeof(float); auto *h_points = (float *) malloc(pointsBytes); for (int i = 0; i < pointsCntU; i++) { for (int j = 0; j < pointsCntV; j++) { for (int k = 0; k < pointSize; k++) { h_points[(i * pointsCntV + j) * pointSize + k] = controlPoints[i][j][k]; } } } float *d_points; cudaMalloc((void **) &d_points, pointsBytes); cudaMemcpy(d_points, h_points, pointsBytes, cudaMemcpyHostToDevice); // 构造指向device的knots const int knotsCnt_u = knots_u.size(), knotsCnt_v = knots_v.size(); const int knotsBytesU = knotsCnt_u * sizeof(float), knotsBytesV = knotsCnt_v * sizeof(float); auto *h_knotsU = (float *) malloc(knotsBytesU), *h_knotsV = (float *) malloc(knotsBytesV); for (int i = 0; i < knotsCnt_u; i++) h_knotsU[i] = knots_u[i]; for (int i = 0; i < knotsCnt_v; i++) h_knotsV[i] = knots_v[i]; float *d_knots_u; float *d_knots_v; cudaMalloc((void **) &d_knots_u, knotsBytesU); cudaMalloc((void **) &d_knots_v, knotsBytesV); cudaMemcpy(d_knots_u, h_knotsU, knotsBytesU, cudaMemcpyHostToDevice); cudaMemcpy(d_knots_v, h_knotsV, knotsBytesV, cudaMemcpyHostToDevice); // 构造线程层级,调用核函数 const dim3 grid(32, 32); const dim3 block((sampleCnt_u + grid.x - 1) / grid.x, (sampleCnt_v + grid.y - 1) / grid.y); // 记录用时 double time_cost_device; if(recordTime) time_cost_device = utils::get_time_windows(); calculate_kernel <<>>(d_points, d_knots_u, d_knots_v, pointsCntU, pointsCntV, pointSize, knots_u.size(), knots_v.size(), sampleCnt_u, sampleCnt_v); if(recordTime) { cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用 time_cost_device = utils::get_time_windows() - time_cost_device; printf("GPU time cost of surface evaluation for %d samples: %lf\n", sampleCnt_u * sampleCnt_v, time_cost_device); } // 释放内存 free(h_points); free(h_knotsU); free(h_knotsV); cudaFree(d_points); cudaFree(d_knots_u); cudaFree(d_knots_v); cudaDeviceReset(); return {}; } __global__ void NurbsSurface::calculate_kernel(const float *d_points, const float *d_knots_u, const float *d_knots_v, int d_pointsCnt_u, int d_pointsCnt_v, int d_pointSize, int d_knotsCnt_u, int d_knotsCnt_v, int d_sampleCnt_u, int d_sampleCnt_v) { // 二维grid和二维的block int ix = int(blockIdx.x * blockDim.x + threadIdx.x); int iy = int(blockIdx.y * blockDim.y + threadIdx.y); float d_paramCeil_u = d_knots_u[d_knotsCnt_u - 1]; float d_paramCeil_v = d_knots_v[d_knotsCnt_v - 1]; float u = ix * d_paramCeil_u / (d_sampleCnt_u - 1); float v = iy * d_paramCeil_v / (d_sampleCnt_v - 1); if (u > 1.0 * d_paramCeil_u || v > 1.0 * d_paramCeil_v) { return; } int d_degree_u = d_knotsCnt_u - 1 - d_pointsCnt_u; int d_degree_v = d_knotsCnt_v - 1 - d_pointsCnt_v; // 注意,在device中,全局内存还是以malloc和free的方式分配和回收的,而不是使用cudaMalloc和cudaFree auto *N_Texture_U = (float *) malloc((d_degree_u + 1) * (d_knotsCnt_u - 1) * sizeof(float)); auto *N_Texture_V = (float *) malloc((d_degree_v + 1) * (d_knotsCnt_v - 1) * sizeof(float)); d_basisFunction(N_Texture_U, d_knots_u, u, d_degree_u, d_knotsCnt_u); d_basisFunction(N_Texture_V, d_knots_v, v, d_degree_v, d_knotsCnt_v); float x = 0., y = 0., z = 0.; for (int i = 0; i < d_pointsCnt_u; i++) { for (int j = 0; j < d_pointsCnt_v; j++) { float N_U = N_Texture_U[d_degree_u * (d_knotsCnt_u - 1) + i]; float N_V = N_Texture_V[d_degree_v * (d_knotsCnt_v - 1) + j]; int idx = (i * d_pointsCnt_v + j) * d_pointSize; x += N_U * N_V * d_points[idx]; y += N_U * N_V * d_points[idx + 1]; z += N_U * N_V * d_points[idx + 2]; } } printf("(%g, %g)-->(%g, %g, %g)\n", u, v, x, y, z); // %g输出,舍弃无意义的0 free(N_Texture_U); free(N_Texture_V); } __global__ void NurbsCurve::calculate_kernel(const float *d_points, const float *d_knots, int d_pointsCnt, int d_pointSize, int d_knotsCnt, int d_sampleCnt) { // 二维grid和一维的block int idx = (blockIdx.y * gridDim.x + blockIdx.x) * blockDim.x + threadIdx.x; float d_paramCeil = d_knots[d_knotsCnt - 1]; float u = idx * d_paramCeil / (d_sampleCnt - 1); if (u > 1.0 * d_paramCeil) { return; } int d_degree = d_knotsCnt - 1 - d_pointsCnt; // 注意,在device中,全局内存还是以malloc和free的方式分配和回收的,而不是使用cudaMalloc和cudaFree auto *N_Texture = (float *) malloc((d_degree + 1) * (d_knotsCnt - 1) * sizeof(float)); d_basisFunction(N_Texture, d_knots, u, d_degree, d_knotsCnt); float x = 0., y = 0., z = 0.; for (int i = 0; i < d_pointsCnt; i++) { float N = N_Texture[d_degree * (d_knotsCnt - 1) + i]; int baseIdx = i * d_pointSize; x += N * d_points[baseIdx]; y += N * d_points[baseIdx + 1]; z += N * d_points[baseIdx + 2]; } printf("(%g)-->(%g, %g, %g)\n", u, x, y, z); // %g输出,舍弃无意义的0 free(N_Texture); } __host__ NurbsCurve::Evaluator::Evaluator(std::vector> controlPoints, std::vector knots) { this->knots = std::move(knots); this->controlPoints = std::move(controlPoints); recordTime = false; } __host__ std::vector>> NurbsCurve::Evaluator::calculate(int sampleCnt) { // 构造指向device的controlPoints const int pointsCnt = controlPoints.size(), pointSize = controlPoints[0].size(); const int pointsBytes = pointsCnt * pointSize * sizeof(float); auto *h_points = (float *) malloc(pointsBytes); for (int i = 0; i < pointsCnt; i++) { for (int j = 0; j < pointSize; j++) { h_points[i * pointSize + j] = controlPoints[i][j]; } } float *d_points; cudaMalloc((void **) &d_points, pointsBytes); cudaMemcpy(d_points, h_points, pointsBytes, cudaMemcpyHostToDevice); // 构造指向device的knots const int knotsCnt = knots.size(); const int knotsBytes = knotsCnt * sizeof(float); auto *h_knots = (float *) malloc(knotsBytes); for (int i = 0; i < knotsCnt; i++) h_knots[i] = knots[i]; float *d_knots; cudaMalloc((void **) &d_knots, knotsBytes); cudaMemcpy(d_knots, h_knots, knotsBytes, cudaMemcpyHostToDevice); // 构造线程层级,调用核函数 const dim3 grid(32, 32); const dim3 block((sampleCnt + grid.x - 1) / grid.x, (sampleCnt + grid.y - 1) / grid.y); // 记录用时 double time_cost_device; if(recordTime) time_cost_device = utils::get_time_windows(); calculate_kernel <<>>(d_points, d_knots, pointsCnt, pointSize, knotsCnt, sampleCnt); if(recordTime) { cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用 time_cost_device = utils::get_time_windows() - time_cost_device; printf("GPU time cost of surface evaluation for %d samples: %lf\n", sampleCnt * sampleCnt, time_cost_device); } free(h_points); free(h_knots); cudaFree(d_points); cudaFree(d_knots); cudaDeviceReset(); return {}; } __device__ void d_basisFunction(float *N_Texture, const float *knots, float u, int degree, int d_knotsCnt) { int m = d_knotsCnt - 1; for (int p = 0; p <= degree; p++) { for (int i = 0; i + p <= m - 1; i++) { if (p == 0) { if ((u > knots[i] || d_floatEqual(u, knots[i])) && (u < knots[i + 1]) || d_floatEqual(u, knots[i + 1]) && d_floatEqual(u, knots[m])) { N_Texture[p * m + i] = 1.0; } else { N_Texture[p * m + i] = 0.0; } } else { float Nip_1 = N_Texture[(p - 1) * m + i]; float Ni1p_1 = N_Texture[(p - 1) * m + i + 1]; float left = d_floatEqual(knots[i + p], knots[i]) ? 0 : (u - knots[i]) * Nip_1 / (knots[i + p] - knots[i]); float right = d_floatEqual(knots[i + p + 1], knots[i + 1]) ? 0 : (knots[i + p + 1] - u) * Ni1p_1 / (knots[i + p + 1] - knots[i + 1]); N_Texture[p * m + i] = left + right; } } } } __device__ bool d_floatEqual(float a, float b) { return abs(a - b) < 0.00001; } void NurbsCurve::Evaluator::setRecordTime(bool r){ recordTime = r; } void NurbsSurface::Evaluator::setRecordTime(bool r){ recordTime = r; }