Browse Source

切向量、法向量、二阶导求解

master
Dtouch 3 years ago
parent
commit
bbb5ff5139
  1. 452
      NurbsEvaluator.cu
  2. 41
      NurbsEvaluator.cuh
  3. 40
      main.cpp

452
NurbsEvaluator.cu

@ -9,6 +9,16 @@
#include "utils.h"
//#include "NurbsBasis.cuh"
__device__ void normalization(float &a, float &b, float &c) {
float sumA = a * a;
float sumB = b * b;
float sumC = c * c;
float sum = sumA + sumB + sumC;
a = sqrt(sumA / sum);
b = sqrt(sumB / sum);
c = sqrt(sumC / sum);
}
//extern __device__ void NurbsBasis::d_basisFunction(float *N_Texture, const float *knots, float u, int degree, int d_knotsCnt) {};
__host__ NurbsSurface::Evaluator::Evaluator(std::vector<std::vector<std::vector<float>>> controlPoints,
@ -24,23 +34,24 @@ __host__ NurbsSurface::Evaluator::Evaluator(std::vector<std::vector<std::vector<
d_knots_u = nullptr;
d_knots_v = nullptr;
d_points = nullptr;
d_derivatives = nullptr;
}
__host__ std::vector<std::map<std::pair<float, float>, std::vector<float>>>
NurbsSurface::Evaluator::evaluate(int sampleCnt_u_, int sampleCnt_v_) {
sampleCnt_u = sampleCnt_u_;
sampleCnt_v = sampleCnt_v_;
printf("outside printf..\n");
// NurbsBasis::myPrint11(1, 3);
NurbsSurface::Evaluator::evaluate(int sampleCnt_u, int sampleCnt_v) {
if (POINT_SIZE != controlPoints[0][0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return {};
}
// 构造指向device的controlPoints
const int pointsCnt_u = controlPoints.size(), pointsCnt_v = controlPoints[0].size(), pointSize = controlPoints[0][0].size();
const int pointsBytes = pointsCnt_u * pointsCnt_v * pointSize * sizeof(float);
const int pointsCnt_u = controlPoints.size(), pointsCnt_v = controlPoints[0].size();
const int pointsBytes = pointsCnt_u * pointsCnt_v * POINT_SIZE * sizeof(float);
auto *h_points = (float *) malloc(pointsBytes);
for (int i = 0; i < pointsCnt_u; i++) {
for (int j = 0; j < pointsCnt_v; j++) {
for (int k = 0; k < pointSize; k++) {
h_points[(i * pointsCnt_v + j) * pointSize + k] = controlPoints[i][j][k];
for (int k = 0; k < POINT_SIZE; k++) {
h_points[(i * pointsCnt_v + j) * POINT_SIZE + k] = controlPoints[i][j][k];
}
}
}
@ -86,7 +97,7 @@ NurbsSurface::Evaluator::evaluate(int sampleCnt_u_, int sampleCnt_v_) {
cudaDeviceSynchronize();
if (recordTime) time_cost_device = utils::get_time_windows();
g_evaluate <<<grid, block>>>(d_nTexture_u, d_nTexture_v, d_points, pointsCnt_u, pointsCnt_v, pointSize,
g_evaluate <<<grid, block>>>(d_nTexture_u, d_nTexture_v, d_points, pointsCnt_u, pointsCnt_v, POINT_SIZE,
knots_u[knotsCnt_u - 1], knots_v[knotsCnt_v - 1], sampleCnt_u, sampleCnt_v);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
@ -100,25 +111,27 @@ NurbsSurface::Evaluator::evaluate(int sampleCnt_u_, int sampleCnt_v_) {
free(h_knots_u);
free(h_knots_v);
printf("First derivatives and normal vectors calculated by GPU:\n");
derivative();
cudaDeviceReset();
return {};
}
__host__ std::vector<std::map<float, std::vector<float>>>
NurbsCurve::Evaluator::evaluate(int sampleCnt_) {
this->sampleCnt = sampleCnt_;
NurbsCurve::Evaluator::evaluate(int sampleCnt) {
if (POINT_SIZE != controlPoints[0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return {};
}
// 构造指向device的controlPoints
const int pointsCnt = controlPoints.size(), pointSize = controlPoints[0].size();
const int pointsBytes = pointsCnt * pointSize * sizeof(float);
const int pointsCnt = controlPoints.size();
const int pointsBytes = pointsCnt * POINT_SIZE * sizeof(float);
auto *h_points = (float *) malloc(pointsBytes);
for (int i = 0; i < pointsCnt; i++) {
for (int j = 0; j < pointSize; j++) {
h_points[i * pointSize + j] = controlPoints[i][j];
for (int j = 0; j < POINT_SIZE; j++) {
h_points[i * POINT_SIZE + j] = controlPoints[i][j];
}
}
myCudaFree(d_points); // 注意内存管理
cudaMalloc((void **) &d_points, pointsBytes);
cudaMemcpy(d_points, h_points, pointsBytes, cudaMemcpyHostToDevice);
@ -127,16 +140,19 @@ NurbsCurve::Evaluator::evaluate(int sampleCnt_) {
const int knotsBytes = knotsCnt * sizeof(float);
auto *h_knots = (float *) malloc(knotsBytes);
for (int i = 0; i < knotsCnt; i++) h_knots[i] = knots[i];
myCudaFree(d_knots); // 注意内存管理
cudaMalloc((void **) &d_knots, knotsBytes);
cudaMemcpy(d_knots, h_knots, knotsBytes, cudaMemcpyHostToDevice);
// 分配nTexture的内存。只需要GPU内存
// float *d_nTexture = nullptr;
myCudaFree(d_nTexture); // 注意内存管理
cudaMalloc((void **) &d_nTexture,
sampleCnt * pointsCnt * sizeof(float)); // 注意nTexture的大小,在算梯度时用得到i=pointsCnt + 1的基函数值
// 分配nTexture1的内存。只需要GPU内存
// float *d_nTexture1 = nullptr;
myCudaFree(d_nTexture1); // 注意内存管理
cudaMalloc((void **) &d_nTexture1, sampleCnt * (pointsCnt + 1) * sizeof(float));
// 构造g_basisTexture线程层级
@ -154,7 +170,7 @@ NurbsCurve::Evaluator::evaluate(int sampleCnt_) {
// cudaMemcpy(d_nTextureCpy, d_nTexture, nTextureBytes, cudaMemcpyDeviceToDevice); // 有同步功能
cudaDeviceSynchronize();
printf("here..\n");
g_evaluate <<<grid, block>>>(d_nTexture, d_points, pointsCnt, pointSize, knots[knotsCnt - 1], sampleCnt);
g_evaluate <<<grid, block>>>(d_nTexture, d_points, pointsCnt, POINT_SIZE, knots[knotsCnt - 1], sampleCnt);
// g_test<<<1,6>>>(d_nTextureCpy);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
@ -163,22 +179,30 @@ NurbsCurve::Evaluator::evaluate(int sampleCnt_) {
}
free(h_points);
free(h_knots);
printf("First derivatives calculated by GPU:\n");
derivative();
cudaDeviceReset();
return {};
}
__host__ void NurbsSurface::Evaluator::derivative() {
__host__ void NurbsSurface::Evaluator::derivative(int sampleCnt_u, int sampleCnt_v) {
// 先完成evaluation
evaluate(sampleCnt_u, sampleCnt_v);
if (POINT_SIZE != controlPoints[0][0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return;
}
float *d_derTexture_u = nullptr;
float *d_derTexture_v = nullptr;
const int pointsCnt_u = controlPoints.size(), pointsCnt_v = controlPoints[0].size(), pointSize = controlPoints[0][0].size();
const int pointsCnt_u = controlPoints.size(), pointsCnt_v = controlPoints[0].size();
const int knotsCnt_u = knots_u.size(), knotsCnt_v = knots_v.size();
cudaMalloc((void **) &d_derTexture_u, sampleCnt_u * pointsCnt_u * sizeof(float));
cudaMalloc((void **) &d_derTexture_v, sampleCnt_v * pointsCnt_v * sizeof(float));
// 构造切向量计算结果
myCudaFree(d_derivatives);
cudaMalloc((void **) &d_derivatives,
sampleCnt_v * sampleCnt_u * 6 * sizeof(float)); // 每个采用所求的切向量是一个六元向量,前三位是对u的偏导、后三位是对v的偏导
// 构造线程层级
dim3 block(32, 32);
dim3 grid((sampleCnt_u + block.x - 1) / block.x, (sampleCnt_v + block.y - 1) / block.y);
@ -194,8 +218,10 @@ __host__ void NurbsSurface::Evaluator::derivative() {
g_derTexture<<<gridTex_v, blockTex>>>(d_derTexture_v, d_nTexture1_v, d_knots_v, pointsCnt_v, knotsCnt_v,
sampleCnt_v);
cudaDeviceSynchronize();
g_derivative<<<grid, block>>>(d_derTexture_u, d_derTexture_v, d_nTexture_u, d_nTexture_v, d_points, pointsCnt_u,
pointsCnt_v, pointSize, knots_u[knotsCnt_u - 1], knots_v[knotsCnt_v - 1], sampleCnt_u,
g_derivative<<<grid, block>>>(d_derivatives, d_derTexture_u, d_derTexture_v, d_nTexture_u, d_nTexture_v, d_points,
pointsCnt_u,
pointsCnt_v, POINT_SIZE, knots_u[knotsCnt_u - 1], knots_v[knotsCnt_v - 1],
sampleCnt_u,
sampleCnt_v);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
@ -207,9 +233,17 @@ __host__ void NurbsSurface::Evaluator::derivative() {
cudaFree(d_derTexture_v);
}
__host__ void NurbsCurve::Evaluator::derivative() {
__host__ void NurbsCurve::Evaluator::derivative(int sampleCnt) {
// 先完成evaluation
evaluate(sampleCnt);
if (POINT_SIZE != controlPoints[0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return;
}
float *d_derTexture = nullptr;
const int pointsCnt = controlPoints.size(), pointSize = controlPoints[0].size();
const int pointsCnt = controlPoints.size();
const int knotsCnt = knots.size();
cudaMalloc((void **) &d_derTexture, sampleCnt * pointsCnt * sizeof(float));
@ -219,12 +253,19 @@ __host__ void NurbsCurve::Evaluator::derivative() {
// 构造g_basisTexture线程层级
dim3 blockTex(512);
dim3 gridTex((sampleCnt + blockTex.x - 1) / blockTex.x);
// 构造切向量计算结果
myCudaFree(d_derivatives);
cudaMalloc((void **) &d_derivatives, sampleCnt * 3 * sizeof(float)); // 每个采用所求的切向量是一个三维向量
// 记录用时
double time_cost_device;
if (recordTime) time_cost_device = utils::get_time_windows();
g_derTexture<<<gridTex, blockTex>>>(d_derTexture, d_nTexture1, d_knots, pointsCnt, knotsCnt, sampleCnt);
cudaDeviceSynchronize();
g_derivative<<<grid, block>>>(d_derTexture, d_points, pointsCnt, pointSize, knots[knotsCnt - 1], sampleCnt);
g_derivative<<<grid, block>>>(d_derivatives, d_derTexture, d_nTexture, d_points, pointsCnt, POINT_SIZE,
knots[knotsCnt - 1], sampleCnt);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
time_cost_device = utils::get_time_windows() - time_cost_device;
@ -234,11 +275,62 @@ __host__ void NurbsCurve::Evaluator::derivative() {
cudaFree(d_derTexture);
}
__host__ void NurbsSurface::Evaluator::curvature(int sampleCnt_u, int sampleCnt_v) {
// 先计算切向量
derivative(sampleCnt_u, sampleCnt_v);
if (POINT_SIZE != controlPoints[0][0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return;
}
// 构造线程层级
dim3 block(32, 32);
dim3 grid((sampleCnt_u + block.x - 1) / block.x, (sampleCnt_v + block.y - 1) / block.y);
// 记录用时
double time_cost_device;
if (recordTime) time_cost_device = utils::get_time_windows();
g_curvature<<<grid, block>>>(d_derivatives, sampleCnt_u, sampleCnt_v, knots_u[knots_u.size() - 1],
knots_v[knots_v.size() - 1]);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
time_cost_device = utils::get_time_windows() - time_cost_device;
printf("GPU time cost of surface second derivative calculating for %d samples: %lf\n",
sampleCnt_u * sampleCnt_v,
time_cost_device);
}
}
__host__ void NurbsCurve::Evaluator::curvature(int sampleCnt) {
// 先计算切向量
derivative(sampleCnt);
if (POINT_SIZE != controlPoints[0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return;
}
// 构造线程层级
dim3 block(32, 32);
dim3 grid((sampleCnt + block.x * block.y - 1) / (block.x * block.y));
// 记录用时
double time_cost_device;
if (recordTime) time_cost_device = utils::get_time_windows();
g_curvature<<<grid, block>>>(d_derivatives, sampleCnt, knots[knots.size() - 1]);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
time_cost_device = utils::get_time_windows() - time_cost_device;
printf("GPU time cost of curve second derivative calculating for %d samples: %lf\n", sampleCnt,
time_cost_device);
}
}
//__global__ void
//NurbsSurface::g_evaluate(const float *d_points, const float *d_knots_u, const float *d_knots_v,
// int d_pointsCnt_u,
// int d_pointsCnt_v, int d_pointSize, int d_knotsCnt_u, int d_knotsCnt_v,
// int d_pointsCnt_v, int d_POINT_SIZE, int d_knotsCnt_u, int d_knotsCnt_v,
// int d_sampleCnt_u, int d_sampleCnt_v) {
//// printf(" surface calculating... \n");
// // 二维grid和二维的block
@ -267,7 +359,7 @@ __host__ void NurbsCurve::Evaluator::derivative() {
// for (int j = 0; j < d_pointsCnt_v; j++) {
// float N_U = N_Texture_U[d_degree_u * (d_knotsCnt_u - 1) + i];
// float N_V = N_Texture_V[d_degree_v * (d_knotsCnt_v - 1) + j];
// int idx = (i * d_pointsCnt_v + j) * d_pointSize;
// int idx = (i * d_pointsCnt_v + j) * d_POINT_SIZE;
// x += N_U * N_V * d_points[idx];
// y += N_U * N_V * d_points[idx + 1];
// z += N_U * N_V * d_points[idx + 2];
@ -280,7 +372,7 @@ __host__ void NurbsCurve::Evaluator::derivative() {
__global__ void
NurbsSurface::g_evaluate(const float *d_nTexture_u, const float *d_nTexture_v, const float *d_points, int d_pointsCnt_u,
int d_pointsCnt_v, int d_pointSize, float d_lastKnot_u, float d_lastKnot_v, int d_sampleCnt_u,
int d_pointsCnt_v, int d_POINT_SIZE, float d_lastKnot_u, float d_lastKnot_v, int d_sampleCnt_u,
int d_sampleCnt_v) {
// 二维grid和二维的block
@ -294,25 +386,30 @@ NurbsSurface::g_evaluate(const float *d_nTexture_u, const float *d_nTexture_v, c
return;
}
float x = 0., y = 0., z = 0.;
float x = 0., y = 0., z = 0., sumW = 0.;
for (int i = 0; i < d_pointsCnt_u; i++) {
float N_U = d_nTexture_u[ix * d_pointsCnt_u + i];
for (int j = 0; j < d_pointsCnt_v; j++) {
float N_V = d_nTexture_v[iy * d_pointsCnt_v + j];
int idx = (i * d_pointsCnt_v + j) * d_pointSize;
x += N_U * N_V * d_points[idx];
y += N_U * N_V * d_points[idx + 1];
z += N_U * N_V * d_points[idx + 2];
int idx = (i * d_pointsCnt_v + j) * d_POINT_SIZE;
float w = d_points[idx + 3];
x += N_U * N_V * w * d_points[idx];
y += N_U * N_V * w * d_points[idx + 1];
z += N_U * N_V * w * d_points[idx + 2];
sumW += N_U * N_V * w;
}
}
printf("(%g, %g)-->(%g, %g, %g)\n", u, v, x, y, z); // %g输出,舍弃无意义的0
x = x / sumW;
y = y / sumW;
z = z / sumW;
// printf("(%g, %g)-->(%g, %g, %g)\n", u, v, x, y, z); // %g输出,舍弃无意义的0
}
__global__ void
NurbsSurface::g_derivative(const float *derTexture_u, const float *derTexture_v, const float *nTexture_u,
const float *nTexture_v, const float *d_points, int d_pointsCnt_u, int d_pointsCnt_v,
int d_pointSize, float d_lastKnot_u, float d_lastKnot_v, int d_sampleCnt_u,
int d_sampleCnt_v) {
NurbsSurface::g_derivative(float *derivatives, const float *derTexture_u, const float *derTexture_v,
const float *nTexture_u, const float *nTexture_v, const float *d_points, int d_pointsCnt_u,
int d_pointsCnt_v, int d_POINT_SIZE, float d_lastKnot_u, float d_lastKnot_v,
int d_sampleCnt_u, int d_sampleCnt_v) {
// 二维grid和二维的block
int ix = blockIdx.x * blockDim.x + threadIdx.x;
int iy = blockIdx.y * blockDim.y + threadIdx.y;
@ -323,31 +420,157 @@ NurbsSurface::g_derivative(const float *derTexture_u, const float *derTexture_v,
float u = ix * d_lastKnot_u / (d_sampleCnt_u - 1);
float v = iy * d_lastKnot_v / (d_sampleCnt_v - 1);
float x_u = 0., y_u = 0, z_u = 0.;
float x_v = 0., y_v = 0, z_v = 0.;
float nubsPdx_u = 0., nubsPdy_u = 0, nubsPdz_u = 0., nubsPdw_u = 0.;
float nubsPdx_v = 0., nubsPdy_v = 0, nubsPdz_v = 0., nubsPdw_v = 0.;
for (int i = 0; i < d_pointsCnt_u; i++) {
for (int j = 0; j < d_pointsCnt_u; j++) {
int baseIdx = (i * d_pointsCnt_v + j) * d_pointSize;
int baseIdx = (i * d_pointsCnt_v + j) * d_POINT_SIZE;
float factor_u = derTexture_u[ix * d_pointsCnt_u + i] * nTexture_v[iy * d_pointsCnt_v + j];
float factor_v = derTexture_v[iy * d_pointsCnt_v + j] * nTexture_u[ix * d_pointsCnt_u + i];
x_u += factor_u * d_points[baseIdx];
y_u += factor_u * d_points[baseIdx + 1];
z_u += factor_u * d_points[baseIdx + 2];
float wij = d_points[baseIdx + 3];
nubsPdx_u += factor_u * wij * d_points[baseIdx];
nubsPdy_u += factor_u * wij * d_points[baseIdx + 1];
nubsPdz_u += factor_u * wij * d_points[baseIdx + 2];
nubsPdw_u += factor_u * wij;
nubsPdx_v += factor_v * wij * d_points[baseIdx];
nubsPdy_v += factor_v * wij * d_points[baseIdx + 1];
nubsPdz_v += factor_v * wij * d_points[baseIdx + 2];
nubsPdw_v += factor_v * wij;
}
}
x_v += factor_v * d_points[baseIdx];
y_v += factor_v * d_points[baseIdx + 1];
z_v += factor_v * d_points[baseIdx + 2];
float x = 0., y = 0., z = 0., w = 0.;
for (int i = 0; i < d_pointsCnt_u; i++) {
float N_U = nTexture_u[ix * d_pointsCnt_u + i];
for (int j = 0; j < d_pointsCnt_v; j++) {
float N_V = nTexture_v[iy * d_pointsCnt_v + j];
int idx = (i * d_pointsCnt_v + j) * d_POINT_SIZE;
float wij = d_points[idx + 3];
x += N_U * N_V * wij * d_points[idx];
y += N_U * N_V * wij * d_points[idx + 1];
z += N_U * N_V * wij * d_points[idx + 2];
w += N_U * N_V * wij;
}
}
float x_n = y_u * z_v - y_v * z_u, y_n = x_v * z_u - x_u * z_v, z_n = x_u * y_v - x_v * y_u; // 叉乘得到法向量
printf("(%g,%g)-->u:(%g, %g, %g), v:(%g,%g,%g), normal:(%g,%g,%g)\n", u, v, x_u, y_u, z_u, x_v, y_v, z_v,
x_n, y_n, z_n);
float w2 = w * w;
float pdx_u = (nubsPdx_u * w - x * nubsPdw_u) / w2;
float pdy_u = (nubsPdy_u * w - y * nubsPdw_u) / w2;
float pdz_u = (nubsPdz_u * w - z * nubsPdw_u) / w2;
float pdx_v = (nubsPdx_v * w - x * nubsPdw_v) / w2;
float pdy_v = (nubsPdy_v * w - y * nubsPdw_v) / w2;
float pdz_v = (nubsPdz_v * w - z * nubsPdw_v) / w2;
// float pdz_u = (nubsPdz_u * w - z )
int baseIdx = (ix * d_sampleCnt_v + iy) * 6;
derivatives[baseIdx] = pdx_u;
derivatives[baseIdx + 1] = pdy_u;
derivatives[baseIdx + 2] = pdz_u;
derivatives[baseIdx + 3] = pdx_v;
derivatives[baseIdx + 4] = pdy_v;
derivatives[baseIdx + 5] = pdz_v;
float x_n = pdy_u * pdz_v - pdy_v * pdz_u, y_n = pdx_v * pdz_u - pdx_u * pdz_v, z_n =
pdx_u * pdy_v - pdx_v * pdy_u; // 叉乘得到法向量
if((ix == 8 && iy == 9) || (ix == 7 && iy == 9) || (ix == 9 && iy == 9) || (ix == 8 && iy == 8) || (ix == 8 && iy == 10))
printf("(%g,%g)-->u:(%g, %g, %g), v:(%g,%g,%g), normal:(%g,%g,%g)\n", u, v, pdx_u, pdy_u, pdz_u, pdx_v, pdy_v,
pdz_v, x_n, y_n, z_n);
}
__global__ void
NurbsSurface::g_curvature(const float *derivatives, int sampleCnt_u, int sampleCnt_v, float lastKnot_u,
float lastKnot_v) {
// 二维grid和二维的block
int ix = blockIdx.x * blockDim.x + threadIdx.x;
int iy = blockIdx.y * blockDim.y + threadIdx.y;
if (ix >= sampleCnt_u || iy >= sampleCnt_v) {
return;
}
float step_u = lastKnot_u / (sampleCnt_u - 1), step_v = lastKnot_v / (sampleCnt_v - 1);
float u = ix * step_u, v = iy * step_v;
int baseIdx = (ix * sampleCnt_v + iy) * 6;
int lastBaseIdx_u = ((ix - 1) * sampleCnt_v + iy) * 6, nextBaseIdx_u = ((ix + 1) * sampleCnt_v + iy) * 6;
int lastBaseIdx_v = (ix * sampleCnt_v + iy - 1) * 6, nextBaseIdx_v = (ix * sampleCnt_v + iy + 1) * 6;
// printf("(%g,%g)-->u:(%g, %g, %g), v:(%g,%g,%g)\n", u, v, derivatives[baseIdx], derivatives[baseIdx + 1],
// derivatives[baseIdx + 2], derivatives[baseIdx + 3], derivatives[baseIdx + 4], derivatives[baseIdx + 5]);
float sndPdx_uu, sndPdy_uu, sndPdz_uu, sndPdx_vv, sndPdy_vv, sndPdz_vv; // 二阶导
float sndPdx_uv, sndPdy_uv, sndPdz_uv, sndPdx_vu, sndPdy_vu, sndPdz_vu;
if (ix == 0) {
sndPdx_uu = (derivatives[nextBaseIdx_u] - derivatives[baseIdx]) / step_u;
sndPdy_uu = (derivatives[nextBaseIdx_u + 1] - derivatives[baseIdx + 1]) / step_u;
sndPdz_uu = (derivatives[nextBaseIdx_u + 2] - derivatives[baseIdx + 2]) / step_u;
sndPdx_vu = (derivatives[nextBaseIdx_u + 3] - derivatives[baseIdx + 3]) / step_u;
sndPdy_vu = (derivatives[nextBaseIdx_u + 4] - derivatives[baseIdx + 4]) / step_u;
sndPdz_vu = (derivatives[nextBaseIdx_u + 5] - derivatives[baseIdx + 5]) / step_u;
} else if (ix == sampleCnt_u - 1) {
sndPdx_uu = (derivatives[baseIdx] - derivatives[lastBaseIdx_u]) / step_u;
sndPdy_uu = (derivatives[baseIdx + 1] - derivatives[lastBaseIdx_u + 1]) / step_u;
sndPdz_uu = (derivatives[baseIdx + 2] - derivatives[lastBaseIdx_u + 2]) / step_u;
sndPdx_vu = (derivatives[baseIdx + 3] - derivatives[lastBaseIdx_u + 3]) / step_u;
sndPdy_vu = (derivatives[baseIdx + 4] - derivatives[lastBaseIdx_u + 4]) / step_u;
sndPdz_vu = (derivatives[baseIdx + 5] - derivatives[lastBaseIdx_u + 5]) / step_u;
} else {
sndPdx_uu = (derivatives[nextBaseIdx_u] - derivatives[lastBaseIdx_u]) / (2 * step_u);
sndPdy_uu = (derivatives[nextBaseIdx_u + 1] - derivatives[lastBaseIdx_u + 1]) / (2 * step_u);
sndPdz_uu = (derivatives[nextBaseIdx_u + 2] - derivatives[lastBaseIdx_u + 2]) / (2 * step_u);
sndPdx_vu = (derivatives[nextBaseIdx_u + 3] - derivatives[lastBaseIdx_u + 3]) / (2 * step_u);
sndPdy_vu = (derivatives[nextBaseIdx_u + 4] - derivatives[lastBaseIdx_u + 4]) / (2 * step_u);
sndPdz_vu = (derivatives[nextBaseIdx_u + 5] - derivatives[lastBaseIdx_u + 5]) / (2 * step_u);
}
if (iy == 0) {
sndPdx_vv = (derivatives[nextBaseIdx_v + 3] - derivatives[baseIdx + 3]) / step_v;
sndPdy_vv = (derivatives[nextBaseIdx_v + 4] - derivatives[baseIdx + 4]) / step_v;
sndPdz_vv = (derivatives[nextBaseIdx_v + 5] - derivatives[baseIdx + 5]) / step_v;
sndPdx_uv = (derivatives[nextBaseIdx_v] - derivatives[baseIdx]) / step_v;
sndPdy_uv = (derivatives[nextBaseIdx_v + 1] - derivatives[baseIdx + 1]) / step_v;
sndPdz_uv = (derivatives[nextBaseIdx_v + 2] - derivatives[baseIdx + 2]) / step_v;
} else if (iy == sampleCnt_v - 1) {
sndPdx_vv = (derivatives[baseIdx + 3] - derivatives[lastBaseIdx_v + 3]) / step_v;
sndPdy_vv = (derivatives[baseIdx + 4] - derivatives[lastBaseIdx_v + 4]) / step_v;
sndPdz_vv = (derivatives[baseIdx + 5] - derivatives[lastBaseIdx_v + 5]) / step_v;
sndPdx_uv = (derivatives[baseIdx] - derivatives[lastBaseIdx_v]) / step_v;
sndPdy_uv = (derivatives[baseIdx + 1] - derivatives[lastBaseIdx_v + 1]) / step_v;
sndPdz_uv = (derivatives[baseIdx + 2] - derivatives[lastBaseIdx_v + 2]) / step_v;
} else {
sndPdx_vv = (derivatives[nextBaseIdx_v + 3] - derivatives[lastBaseIdx_v + 3]) / (2 * step_v);
sndPdy_vv = (derivatives[nextBaseIdx_v + 4] - derivatives[lastBaseIdx_v + 4]) / (2 * step_v);
sndPdz_vv = (derivatives[nextBaseIdx_v + 5] - derivatives[lastBaseIdx_v + 5]) / (2 * step_v);
sndPdx_uv = (derivatives[nextBaseIdx_v] - derivatives[lastBaseIdx_v]) / (2 * step_v);
sndPdy_uv = (derivatives[nextBaseIdx_v + 1] - derivatives[lastBaseIdx_v + 1]) / (2 * step_v);
sndPdz_uv = (derivatives[nextBaseIdx_v + 2] - derivatives[lastBaseIdx_v + 2]) / (2 * step_v);
}
float uvx = (sndPdx_uv + sndPdx_vu) / 2, uvy = (sndPdy_uv + sndPdy_vu) / 2, uvz = (sndPdz_uv + sndPdz_vu) / 2;
normalization(sndPdx_uu, sndPdy_uu, sndPdz_uu);
normalization(uvx, uvy, uvz);
normalization(sndPdx_vv, sndPdy_vv, sndPdz_vv);
if(ix == 8 && iy == 9)
printf("(%g, %g) --> uu: (%g, %g, %g), uv: (%g, %g, %g), vv: (%g, %g, %g)\n", u, v, sndPdx_uu, sndPdy_uu, sndPdz_uu,
uvx, uvy, uvz, sndPdx_vv, sndPdy_vv, sndPdz_vv);
}
__global__ void
NurbsCurve::g_evaluate(const float *NTexture, const float *d_points, const int d_pointsCnt,
const int d_pointSize, const float d_lastKnot, const int d_sampleCnt) {
const int d_POINT_SIZE, const float d_lastKnot, const int d_sampleCnt) {
// printf(" curve calculating... \n");
// 二维grid和一维的block
// int idx = (blockIdx.y * gridDim.x + blockIdx.x) * blockDim.x + threadIdx.x;
@ -362,35 +585,86 @@ NurbsCurve::g_evaluate(const float *NTexture, const float *d_points, const int d
// // 注意,在device中,全局内存还是以malloc和free的方式分配和回收的,而不是使用cudaMalloc和cudaFree
// auto *N_dp = (float *) malloc((d_degree + 1) * (d_knotsCnt - 1) * sizeof(float));
// d_basisFunction(N_dp, d_knots, u, d_degree, d_knotsCnt);
float x = 0., y = 0., z = 0.;
float x = 0., y = 0., z = 0., sumW = 0.;
for (int i = 0; i < d_pointsCnt; i++) {
float N = NTexture[idx * d_pointsCnt + i];
int baseIdx = i * d_pointSize;
x += N * d_points[baseIdx];
y += N * d_points[baseIdx + 1];
z += N * d_points[baseIdx + 2];
int baseIdx = i * d_POINT_SIZE;
float w = d_points[baseIdx + 3];
x += N * w * d_points[baseIdx];
y += N * w * d_points[baseIdx + 1];
z += N * w * d_points[baseIdx + 2];
sumW += N * w;
}
x = x / sumW;
y = y / sumW;
z = z / sumW;
printf("(%g)-->(%g, %g, %g)\n", u, x, y, z); // %g输出,舍弃无意义的0
}
__global__ void
NurbsCurve::g_derivative(const float *derTexture, const float *d_points, int d_pointsCnt, int d_pointSize,
NurbsCurve::g_derivative(float *derivatives, const float *derTexture, const float *nTexture, const float *d_points,
int d_pointsCnt, int d_POINT_SIZE,
float d_lastKnot, int d_sampleCnt) {
// 二维block和一维grid
int idx = blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
if (idx >= d_sampleCnt) return;
float u = idx * d_lastKnot / (d_sampleCnt - 1);
float x = 0., y = 0, z = 0.;
// printf("pointSize: %d\n", d_pointSize);
float nubs_dx = 0., nubs_dy = 0., nubs_dz = 0., nubs_dw = 0.;
// printf("POINT_SIZE: %d\n", d_POINT_SIZE);
for (int i = 0; i < d_pointsCnt; i++) {
int baseIdx = i * d_pointSize;
int baseIdx = i * d_POINT_SIZE;
float nFactor = derTexture[idx * d_pointsCnt + i];
x += nFactor * d_points[baseIdx];
y += nFactor * d_points[baseIdx + 1];
z += nFactor * d_points[baseIdx + 2];
float wi = d_points[baseIdx + 3];
nubs_dx += nFactor * wi * d_points[baseIdx];
nubs_dy += nFactor * wi * d_points[baseIdx + 1];
nubs_dz += nFactor * wi * d_points[baseIdx + 2];
nubs_dw += nFactor * wi;
// printf("(x, y, z): (%g, %g, %g)\n", d_points[baseIdx], d_points[baseIdx + 1], d_points[baseIdx + 2]);
}
printf("(%g)-->(%g, %g, %g)\n", u, x, y, z);
float x = 0., y = 0., z = 0., w = 0.;
for (int i = 0; i < d_pointsCnt; i++) {
float N = nTexture[idx * d_pointsCnt + i];
int baseIdx = i * d_POINT_SIZE;
float wi = d_points[baseIdx + 3];
x += N * wi * d_points[baseIdx];
y += N * wi * d_points[baseIdx + 1];
z += N * wi * d_points[baseIdx + 2];
w += N * wi;
}
float dx = (nubs_dx * w - x * nubs_dw) / (w * w);
float dy = (nubs_dy * w - y * nubs_dw) / (w * w);
float dz = (nubs_dz * w - z * nubs_dw) / (w * w);
int baseIdx = idx * 3;
derivatives[baseIdx] = dx;
derivatives[baseIdx + 1] = dy;
derivatives[baseIdx + 2] = dz;
printf("(%g)-->(%g, %g, %g)\n", u, dx, dy, dz);
}
__global__ void NurbsCurve::g_curvature(const float *derivatives, int sampleCnt, float lastKnot) {
// 二维block和一维grid
int idx = blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
if (idx >= sampleCnt) return;
float step = lastKnot / (sampleCnt - 1);
float u = idx * step;
float sndPdx, sndPdy, sndPdz; // 二阶导
int baseIdx = idx * 3, lastBaseIdx = (idx - 1) * 3, nextBaseIdx = (idx + 1) * 3;
if (idx == 0) {
sndPdx = (derivatives[nextBaseIdx] - derivatives[baseIdx]) / step;
sndPdy = (derivatives[nextBaseIdx + 1] - derivatives[baseIdx + 1]) / step;
sndPdz = (derivatives[nextBaseIdx + 2] - derivatives[baseIdx + 2]) / step;
} else if (idx == sampleCnt - 1) {
sndPdx = (derivatives[baseIdx] - derivatives[lastBaseIdx]) / step;
sndPdy = (derivatives[baseIdx + 1] - derivatives[lastBaseIdx + 1]) / step;
sndPdz = (derivatives[baseIdx + 2] - derivatives[lastBaseIdx + 2]) / step;
} else {
sndPdx = (derivatives[nextBaseIdx] - derivatives[lastBaseIdx]) / (2 * step);
sndPdy = (derivatives[nextBaseIdx + 1] - derivatives[lastBaseIdx + 1]) / (2 * step);
sndPdz = (derivatives[nextBaseIdx + 2] - derivatives[lastBaseIdx + 2]) / (2 * step);
}
printf("%g --> (%g, %g, %g)\n", u, sndPdx, sndPdy, sndPdz);
}
__global__ void g_basisTexture(float *nTexture, float *nTexture1, const float *d_knots, int d_pointsCnt, int d_knotsCnt,
@ -446,10 +720,9 @@ __host__ NurbsCurve::Evaluator::Evaluator(std::vector<std::vector<float>> contro
recordTime = false;
d_nTexture = nullptr;
d_nTexture1 = nullptr;
sampleCnt = 0;
d_points = nullptr;
d_knots = nullptr;
d_derivatives = nullptr;
}
@ -482,6 +755,13 @@ __device__ bool d_floatEqual(float a, float b) {
return abs(a - b) < 0.00001;
}
__host__ void myCudaFree(float *&p) {
if (p != nullptr) {
cudaFree(p);
p = nullptr;
}
}
void NurbsCurve::Evaluator::setRecordTime(bool r) {
recordTime = r;
@ -492,18 +772,20 @@ void NurbsSurface::Evaluator::setRecordTime(bool r) {
}
NurbsSurface::Evaluator::~Evaluator() {
cudaFree(d_nTexture_u);
cudaFree(d_nTexture_v);
cudaFree(d_nTexture1_u);
cudaFree(d_nTexture1_v);
cudaFree(d_points);
cudaFree(d_knots_u);
cudaFree(d_knots_v);
myCudaFree(d_nTexture_u);
myCudaFree(d_nTexture_v);
myCudaFree(d_nTexture1_u);
myCudaFree(d_nTexture1_v);
myCudaFree(d_points);
myCudaFree(d_knots_u);
myCudaFree(d_knots_v);
cudaDeviceReset();
}
NurbsCurve::Evaluator::~Evaluator() {
cudaFree(d_nTexture);
cudaFree(d_nTexture1);
cudaFree(d_points);
cudaFree(d_knots);
}
myCudaFree(d_nTexture);
myCudaFree(d_nTexture1);
myCudaFree(d_points);
myCudaFree(d_knots);
cudaDeviceReset();
}

41
NurbsEvaluator.cuh

@ -6,6 +6,14 @@
#include <vector>
#include <map>
const int POINT_SIZE = 4;
/**
* 保证释放后的指针指向空。这样一来保证指针不乱指,free的时候不会出错、二来可以判断指针是否已经free
* 注意指针是引用传参,因为要把指针本身置空
*/
__host__ void myCudaFree(float *&p);
namespace NurbsSurface {
/**
* 曲线计算的核函数
@ -17,10 +25,14 @@ namespace NurbsSurface {
int d_sampleCnt_v);
__global__ static void
g_derivative(const float *derTexture_u, const float *derTexture_v, const float *nTexture_u, const float *nTexture_v,
g_derivative(float *derivatives, const float *derTexture_u, const float *derTexture_v, const float *nTexture_u,
const float *nTexture_v,
const float *d_points, int d_pointsCnt_u, int d_pointsCnt_v, int d_pointSize, float d_lastKnot_u,
float d_lastKnot_v, int d_sampleCnt_u, int d_sampleCnt_v);
__global__ static void
g_curvature(const float *derivatives, int sampleCnt_u, int sampleCnt_v, float lastKnot_u, float lastKnot_v);
class Evaluator {
private:
std::vector<std::vector<std::vector<float>>> controlPoints;
@ -36,8 +48,10 @@ namespace NurbsSurface {
float *d_nTexture1_u; // u方向指向度为p-1时的device中的nurbs基函数矩阵
float *d_nTexture1_v; // v方向指向度为p-1时的device中的nurbs基函数矩阵
int sampleCnt_u;
int sampleCnt_v;
float *d_derivatives; // 一阶导计算结果
// int sampleCnt_u;
// int sampleCnt_v;
public:
/**
@ -61,7 +75,12 @@ namespace NurbsSurface {
/**
* 供外部CPU程序使用的、负责调用gpu并行计算切向量的方法
*/
__host__ void derivative();
__host__ void derivative(int sampleCnt_u, int sampleCnt_v);
/**
* 供外部CPU程序使用的、负责调用gpu并行计算二阶导的方法
*/
__host__ void curvature(int sampleCnt_u, int sampleCnt_v);
void setRecordTime(bool r);
@ -86,9 +105,11 @@ namespace NurbsCurve {
float d_lastKnot, int d_sampleCnt);
__global__ static void
g_derivative(const float *derTexture, const float *d_points, int d_pointsCnt, int d_pointSize, float d_lastKnot,
g_derivative(float *derivatives, const float *derTexture, const float *nTexture, const float *d_points,
int d_pointsCnt, int d_pointSize, float d_lastKnot,
int d_sampleCnt);
__global__ static void g_curvature(const float *derivatives, int sampleCnt, float lastKnot);
class Evaluator {
private:
@ -101,7 +122,8 @@ namespace NurbsCurve {
float *d_nTexture; // 指向度为p时的device中的nurbs基函数矩阵
float *d_nTexture1; // 指向度为p-1时的device中的nurbs基函数矩阵
int sampleCnt;
float *d_derivatives{}; // 一阶导计算结果
public:
/**
* 构造函数
@ -119,7 +141,12 @@ namespace NurbsCurve {
/**
* 供外部CPU程序使用的、负责调用gpu并行计算切向量的方法
*/
__host__ void derivative();
__host__ void derivative(int sampleCnt);
/**
* 供外部CPU程序使用的、负责调用gpu并行计算二阶导的方法
*/
__host__ void curvature(int sampleCnt);
__host__ ~Evaluator();

40
main.cpp

@ -3,31 +3,41 @@
int main() {
NurbsSurface::Evaluator nurbsSurfaceEvaluator({
{{-1, 0, 0}, {0, 1, 6}, {1, 0, 4}, {2, 0.5, 3}, {3, 3, 1}, {4, -5, 0}},
{{-2, 1, 1.2}, {1, 2, 3}, {2, 2, 3}, {-1, -0.3, 2}, {-1, 2, 0}, {7, -8, 2}},
{{-3.4, 2, 3}, {2, 3, 0}, {4, 3, 7}, {-2, 0, -0.2}, {1, 1.7, 5}, {9, -10.3, 6}},
{{-1.5, 3.2, 1}, {2.6, 7, -2}, {5, 0.8, 4.2}, {-4, 1, 4}, {2.1, 4, -2}, {11, -6, 4}},
{{-0.2, 2, 0}, {5, 3, 2}, {5, 1.5, 1.4}, {-3, 2, 5}, {0.8, 1.3, 0}, {15, -2, 0.9}},
{{3, 1.4, -1}, {6, 2, 4}, {-1, 0, -2}, {0, 2.8, 2}, {-0.5, 2, 1.2}, {7, -3, -2}},},
{{-1, 0, 0, 0.3}, {0, 1, 6, 0.8}, {1, 0, 4, 0.5}, {2, 0.5, 3, 0.8}, {3, 3, 1, 0.6}, {4, -5, 0, 0.7}},
{{-2, 1, 1.2, 0.2}, {1, 2, 3, 0.3}, {2, 2, 3, 0.6}, {-1, -0.3, 2, 0.4}, {-1, 2, 0, 0.9}, {7, -8, 2, 0.3}},
{{-3.4, 2, 3, 0.8}, {2, 3, 0, 0.6}, {4, 3, 7, 0.3}, {-2, 0, -0.2, 0.4}, {1, 1.7, 5, 0.6}, {9, -10.3, 6, 0.7}},
{{-1.5, 3.2, 1, 0.5}, {2.6, 7, -2, 0.7}, {5, 0.8, 4.2, 0.8}, {-4, 1, 4, 0.7}, {2.1, 4, -2, 0.3}, {11, -6, 4, 0.6}},
{{-0.2, 2, 0, 0.7}, {5, 3, 2, 0.4}, {5, 1.5, 1.4, 0.6}, {-3, 2, 5, 0.8}, {0.8, 1.3, 0, 0.5}, {15, -2, 0.9, 0.6}},
{{3, 1.4, -1, 0.4}, {6, 2, 4, 0.6}, {-1, 0, -2, 0.4}, {0, 2.8, 2, 0.6}, {-0.5, 2, 1.2, 0.9}, {7, -3, -2, 0.3}},},
{0, 0, 0, 0.1, 0.5, 0.8, 1, 1, 1},
{0, 0, 0, 0.2, 0.7, 0.8, 1, 1, 1});
// NurbsSurface::Evaluator nurbsSurfaceEvaluator({
// {{-1, 0, 0, 1}, {0, 1, 6, 1}, {1, 0, 4, 1}, {2, 0.5, 3, 1}, {3, 3, 1, 1}, {4, -5, 0, 1}},
// {{-2, 1, 1.2, 1}, {1, 2, 3, 1}, {2, 2, 3, 1}, {-1, -0.3, 2, 1}, {-1, 2, 0, 1}, {7, -8, 2, 1}},
// {{-3.4, 2, 3, 1}, {2, 3, 0, 1}, {4, 3, 7, 1}, {-2, 0, -0.2, 1}, {1, 1.7, 5, 1}, {9, -10.3, 6, 1}},
// {{-1.5, 3.2, 1, 1}, {2.6, 7, -2, 1}, {5, 0.8, 4.2, 1}, {-4, 1, 4, 1}, {2.1, 4, -2, 1}, {11, -6, 4, 1}},
// {{-0.2, 2, 0, 1}, {5, 3, 2, 1}, {5, 1.5, 1.4, 1}, {-3, 2, 5, 1}, {0.8, 1.3, 0, 1}, {15, -2, 0.9, 1}},
// {{3, 1.4, -1, 1}, {6, 2, 4, 1}, {-1, 0, -2, 1}, {0, 2.8, 2, 1}, {-0.5, 2, 1.2, 1}, {7, -3, -2, 1}},},
// {0, 0, 0, 0.1, 0.5, 0.8, 1, 1, 1},
// {0, 0, 0, 0.2, 0.7, 0.8, 1, 1, 1});
nurbsSurfaceEvaluator.setRecordTime(true);
nurbsSurfaceEvaluator.evaluate(3, 4);
nurbsSurfaceEvaluator.curvature(10001, 10001);
printf("==============================\n");
NurbsCurve::Evaluator nurbsCurveEvaluator(
{{-1, 0, 0},
{0, 1, 6},
{1, 0, 4},
{2, 0.5, 3},
{3, 3, 1},
{4, -5, 0}},
{{-1, 0, 0, 0.3},
{0, 1, 6, 0.4},
{1, 0, 4, 0.5},
{2, 0.5, 3, 0.4},
{3, 3, 1, 0.5},
{4, -5, 0, 0.7}},
{0, 0, 0, 0.1, 0.5, 0.8, 1, 1, 1});
nurbsCurveEvaluator.setRecordTime(true);
nurbsCurveEvaluator.evaluate(11);
nurbsCurveEvaluator.curvature(11);
printf("\n");
// nurbsCurveEvaluator.derivative();
return 0;
}
}

Loading…
Cancel
Save