Browse Source

重新调整项目结构

master
Dtouch 3 years ago
parent
commit
7896d545c2
  1. 3
      .gitignore
  2. 14
      CMakeLists.txt
  3. 38
      NurbsBasis.cu
  4. 28
      NurbsBasis.cuh
  5. 791
      NurbsEvaluator.cu
  6. 191
      NurbsEvaluator.cuh
  7. 6
      README.md
  8. 23
      include/device/DeviceUtils.cuh
  9. 32
      include/device/NurbsCommon.cuh
  10. 73
      include/device/NurbsCurve.cuh
  11. 85
      include/device/NurbsSurface.cuh
  12. 22
      include/utils.h
  13. 26
      src/device/DeviceUtils.cu
  14. 76
      src/device/NurbsCommon.cu
  15. 283
      src/device/NurbsCurve.cu
  16. 424
      src/device/NurbsSurface.cu
  17. 19
      src/main.cpp
  18. 46
      src/utils.cpp
  19. 19
      utils.cpp
  20. 11
      utils.h

3
.gitignore

@ -41,5 +41,4 @@
*.app
cmake-build-debug/
.idea/
.idea/

14
CMakeLists.txt

@ -3,7 +3,7 @@ project(NurbsEvaluator LANGUAGES CXX CUDA)
set(CMAKE_CUDA_STANDARD 14)
add_executable(NurbsEvaluator main.cpp NurbsEvaluator.cu NurbsEvaluator.cuh utils.cpp utils.h NurbsBasis.cu NurbsBasis.cuh)
add_executable(NurbsEvaluator src/main.cpp src/utils.cpp include/utils.h src/device/NurbsCommon.cu include/device/NurbsCommon.cuh src/device/DeviceUtils.cu include/device/DeviceUtils.cuh src/device/NurbsSurface.cu include/device/NurbsSurface.cuh src/device/NurbsCurve.cu include/device/NurbsCurve.cuh)
#add_compile_options("$<$<C_COMPILER_ID:MSVC>:/utf-8>")
#add_compile_options("$<$<CXX_COMPILER_ID:MSVC>:/utf-8>")
@ -14,7 +14,19 @@ add_executable(NurbsEvaluator main.cpp NurbsEvaluator.cu NurbsEvaluator.cuh util
#add_library(NurbsEvaluator NurbsEvaluator.cu NurbsEvaluator.cuh utils.cpp utils.h)
# CUDA_PATH
# linux
#include_directories("/usr/local/device-11.8/targets/x86_64-linux/include")
# windows
include_directories("$ENV{CUDA_PATH}/include")
#MESSAGE("CUDA PATH::: $ENV{CUDA_PATH}")
#MESSAGE("CUDA PATH::: $ENV{LD_LIBRARY_PATH}")
#MESSAGE("CUDA PATH::: $ENV{CPATH}")
set_target_properties(NurbsEvaluator PROPERTIES
CUDA_SEPARABLE_COMPILATION ON)
if(NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
set(CMAKE_CUDA_ARCHITECTURES 70 75 80)
endif(NOT DEFINED CMAKE_CUDA_ARCHITECTURES)

38
NurbsBasis.cu

@ -1,38 +0,0 @@
//
// Created by 14727 on 2022/11/19.
//
#include "NurbsBasis.cuh"
__device__ void d_basisFunction1(float *N_Texture, const float *knots, float u, int degree, int d_knotsCnt) {
int m = d_knotsCnt - 1;
for (int p = 0; p <= degree; p++) {
for (int i = 0; i + p <= m - 1; i++) {
if (p == 0) {
if ((u > knots[i] || d_floatEqual1(u, knots[i])) && (u < knots[i + 1])
||
d_floatEqual1(u, knots[i + 1]) && d_floatEqual1(u, knots[m])) {
N_Texture[p * m + i] = 1.0;
} else {
N_Texture[p * m + i] = 0.0;
}
} else {
float Nip_1 = N_Texture[(p - 1) * m + i];
float Ni1p_1 = N_Texture[(p - 1) * m + i + 1];
float left = d_floatEqual1(knots[i + p], knots[i]) ? 0 : (u - knots[i]) * Nip_1 /
(knots[i + p] - knots[i]);
float right = d_floatEqual1(knots[i + p + 1], knots[i + 1]) ? 0 : (knots[i + p + 1] - u) * Ni1p_1 /
(knots[i + p + 1] - knots[i + 1]);
N_Texture[p * m + i] = left + right;
}
}
}
}
__device__ bool d_floatEqual1(float a, float b) {
return abs(a - b) < 0.00001;
}
void NurbsBasis::myPrint11(int a, int b) {
printf("In NurbsBasis %d!!!\n", a * b);
}

28
NurbsBasis.cuh

@ -1,28 +0,0 @@
//
// Created by 14727 on 2022/11/19.
//
#ifndef NURBSEVALUATOR_NURBSBASIS_CUH
#define NURBSEVALUATOR_NURBSBASIS_CUH
#include <cuda_runtime.h>
#include "cstdio"
/**
* 当u值已知时,根据基函数N的递推表达式,采用动态规划的方式求解N值
* @param N_Texture 结果返回在N_Texture中
*/
extern __device__ void d_basisFunction1(float *N_Texture, const float *knots, float u, int degree, int d_knotsCnt);
/**
* device中判断两个浮点数是否相等。与CPU中一样,GPU中的浮点数也存在很小的误差,直接使用==判断往往容易将相等误判为不等
* @return true:相等
*/
extern __device__ bool d_floatEqual1(float a, float b);
namespace NurbsBasis {
void myPrint11(int a, int b);
};
#endif //NURBSEVALUATOR_NURBSBASIS_CUH

791
NurbsEvaluator.cu

@ -1,791 +0,0 @@
//
// Created by 14727 on 2022/11/7.
//
#include <utility>
#include "NurbsEvaluator.cuh"
#include "cstdio"
#include "utils.h"
//#include "NurbsBasis.cuh"
__device__ void normalization(float &a, float &b, float &c) {
float sumA = a * a;
float sumB = b * b;
float sumC = c * c;
float sum = sumA + sumB + sumC;
a = sqrt(sumA / sum);
b = sqrt(sumB / sum);
c = sqrt(sumC / sum);
}
//extern __device__ void NurbsBasis::d_basisFunction(float *N_Texture, const float *knots, float u, int degree, int d_knotsCnt) {};
__host__ NurbsSurface::Evaluator::Evaluator(std::vector<std::vector<std::vector<float>>> controlPoints,
std::vector<float> knots_u, std::vector<float> knots_v) {
this->knots_u = std::move(knots_u);
this->knots_v = std::move(knots_v);
this->controlPoints = std::move(controlPoints);
recordTime = false;
d_nTexture_u = nullptr;
d_nTexture_v = nullptr;
d_nTexture1_u = nullptr;
d_nTexture1_v = nullptr;
d_knots_u = nullptr;
d_knots_v = nullptr;
d_points = nullptr;
d_derivatives = nullptr;
}
__host__ std::vector<std::map<std::pair<float, float>, std::vector<float>>>
NurbsSurface::Evaluator::evaluate(int sampleCnt_u, int sampleCnt_v) {
if (POINT_SIZE != controlPoints[0][0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return {};
}
// 构造指向device的controlPoints
const int pointsCnt_u = controlPoints.size(), pointsCnt_v = controlPoints[0].size();
const int pointsBytes = pointsCnt_u * pointsCnt_v * POINT_SIZE * sizeof(float);
auto *h_points = (float *) malloc(pointsBytes);
for (int i = 0; i < pointsCnt_u; i++) {
for (int j = 0; j < pointsCnt_v; j++) {
for (int k = 0; k < POINT_SIZE; k++) {
h_points[(i * pointsCnt_v + j) * POINT_SIZE + k] = controlPoints[i][j][k];
}
}
}
cudaMalloc((void **) &d_points, pointsBytes);
cudaMemcpy(d_points, h_points, pointsBytes, cudaMemcpyHostToDevice);
// 构造指向device的knots
const int knotsCnt_u = knots_u.size(), knotsCnt_v = knots_v.size();
const int knotsBytes_u = knotsCnt_u * sizeof(float), knotsBytes_v = knotsCnt_v * sizeof(float);
auto *h_knots_u = (float *) malloc(knotsBytes_u), *h_knots_v = (float *) malloc(knotsBytes_v);
for (int i = 0; i < knotsCnt_u; i++) h_knots_u[i] = knots_u[i];
for (int i = 0; i < knotsCnt_v; i++) h_knots_v[i] = knots_v[i];
cudaMalloc((void **) &d_knots_u, knotsBytes_u);
cudaMalloc((void **) &d_knots_v, knotsBytes_v);
cudaMemcpy(d_knots_u, h_knots_u, knotsBytes_u, cudaMemcpyHostToDevice);
cudaMemcpy(d_knots_v, h_knots_v, knotsBytes_v, cudaMemcpyHostToDevice);
// 构造nTexture
cudaMalloc((void **) &d_nTexture_u,
sampleCnt_u * pointsCnt_u * sizeof(float)); // 注意nTexture的大小,在算梯度时用得到i=pointsCnt + 1的基函数值
cudaMalloc((void **) &d_nTexture_v, sampleCnt_v * pointsCnt_v * sizeof(float));
// 构造nTexture1
cudaMalloc((void **) &d_nTexture1_u, sampleCnt_u * (pointsCnt_u + 1) * sizeof(float));
cudaMalloc((void **) &d_nTexture1_v, sampleCnt_v * (pointsCnt_v + 1) * sizeof(float));
// 构造g_basisTexture线程层级
dim3 blockBasis(512);
dim3 gridBasis_u((sampleCnt_u + blockBasis.x - 1) / blockBasis.x);
dim3 gridBasis_v((sampleCnt_v + blockBasis.x - 1) / blockBasis.x);
// 构造线程层级,调用核函数
dim3 block(32, 32);
dim3 grid((sampleCnt_u + block.x - 1) / block.x, (sampleCnt_v + block.y - 1) / block.y);
// 记录用时
double time_cost_device;
g_basisTexture<<<gridBasis_u, blockBasis>>>(d_nTexture_u, d_nTexture1_u, d_knots_u, pointsCnt_u, knotsCnt_u,
sampleCnt_u);
cudaDeviceSynchronize();
g_basisTexture<<<gridBasis_v, blockBasis>>>(d_nTexture_v, d_nTexture1_v, d_knots_v, pointsCnt_v, knotsCnt_v,
sampleCnt_v);
cudaDeviceSynchronize();
if (recordTime) time_cost_device = utils::get_time_windows();
g_evaluate <<<grid, block>>>(d_nTexture_u, d_nTexture_v, d_points, pointsCnt_u, pointsCnt_v, POINT_SIZE,
knots_u[knotsCnt_u - 1], knots_v[knotsCnt_v - 1], sampleCnt_u, sampleCnt_v);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
time_cost_device = utils::get_time_windows() - time_cost_device;
printf("GPU time cost of surface evaluation for %d samples: %lf\n", sampleCnt_u * sampleCnt_v,
time_cost_device);
}
// 释放内存
free(h_points);
free(h_knots_u);
free(h_knots_v);
printf("First derivatives and normal vectors calculated by GPU:\n");
return {};
}
__host__ std::vector<std::map<float, std::vector<float>>>
NurbsCurve::Evaluator::evaluate(int sampleCnt) {
if (POINT_SIZE != controlPoints[0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return {};
}
// 构造指向device的controlPoints
const int pointsCnt = controlPoints.size();
const int pointsBytes = pointsCnt * POINT_SIZE * sizeof(float);
auto *h_points = (float *) malloc(pointsBytes);
for (int i = 0; i < pointsCnt; i++) {
for (int j = 0; j < POINT_SIZE; j++) {
h_points[i * POINT_SIZE + j] = controlPoints[i][j];
}
}
myCudaFree(d_points); // 注意内存管理
cudaMalloc((void **) &d_points, pointsBytes);
cudaMemcpy(d_points, h_points, pointsBytes, cudaMemcpyHostToDevice);
// 构造指向device的knots
const int knotsCnt = knots.size();
const int knotsBytes = knotsCnt * sizeof(float);
auto *h_knots = (float *) malloc(knotsBytes);
for (int i = 0; i < knotsCnt; i++) h_knots[i] = knots[i];
myCudaFree(d_knots); // 注意内存管理
cudaMalloc((void **) &d_knots, knotsBytes);
cudaMemcpy(d_knots, h_knots, knotsBytes, cudaMemcpyHostToDevice);
// 分配nTexture的内存。只需要GPU内存
// float *d_nTexture = nullptr;
myCudaFree(d_nTexture); // 注意内存管理
cudaMalloc((void **) &d_nTexture,
sampleCnt * pointsCnt * sizeof(float)); // 注意nTexture的大小,在算梯度时用得到i=pointsCnt + 1的基函数值
// 分配nTexture1的内存。只需要GPU内存
// float *d_nTexture1 = nullptr;
myCudaFree(d_nTexture1); // 注意内存管理
cudaMalloc((void **) &d_nTexture1, sampleCnt * (pointsCnt + 1) * sizeof(float));
// 构造g_basisTexture线程层级
dim3 blockBasis(512);
dim3 gridBasis((sampleCnt + blockBasis.x - 1) / blockBasis.x);
// 构造线程层级
dim3 block(32, 32);
dim3 grid((sampleCnt + block.x * block.y - 1) / (block.x * block.y));
// 记录用时
double time_cost_device;
if (recordTime) time_cost_device = utils::get_time_windows();
printf("there..\n");
g_basisTexture <<<gridBasis, blockBasis>>>(d_nTexture, d_nTexture1, d_knots, pointsCnt, knotsCnt, sampleCnt);
// cudaMemcpy(d_nTextureCpy, d_nTexture, nTextureBytes, cudaMemcpyDeviceToDevice); // 有同步功能
cudaDeviceSynchronize();
printf("here..\n");
g_evaluate <<<grid, block>>>(d_nTexture, d_points, pointsCnt, POINT_SIZE, knots[knotsCnt - 1], sampleCnt);
// g_test<<<1,6>>>(d_nTextureCpy);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
time_cost_device = utils::get_time_windows() - time_cost_device;
printf("GPU time cost of curve evaluation for %d samples: %lf\n", sampleCnt, time_cost_device);
}
free(h_points);
free(h_knots);
return {};
}
__host__ void NurbsSurface::Evaluator::derivative(int sampleCnt_u, int sampleCnt_v) {
// 先完成evaluation
evaluate(sampleCnt_u, sampleCnt_v);
if (POINT_SIZE != controlPoints[0][0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return;
}
float *d_derTexture_u = nullptr;
float *d_derTexture_v = nullptr;
const int pointsCnt_u = controlPoints.size(), pointsCnt_v = controlPoints[0].size();
const int knotsCnt_u = knots_u.size(), knotsCnt_v = knots_v.size();
cudaMalloc((void **) &d_derTexture_u, sampleCnt_u * pointsCnt_u * sizeof(float));
cudaMalloc((void **) &d_derTexture_v, sampleCnt_v * pointsCnt_v * sizeof(float));
// 构造切向量计算结果
myCudaFree(d_derivatives);
cudaMalloc((void **) &d_derivatives,
sampleCnt_v * sampleCnt_u * 6 * sizeof(float)); // 每个采用所求的切向量是一个六元向量,前三位是对u的偏导、后三位是对v的偏导
// 构造线程层级
dim3 block(32, 32);
dim3 grid((sampleCnt_u + block.x - 1) / block.x, (sampleCnt_v + block.y - 1) / block.y);
// 构造g_basisTexture线程层级
dim3 blockTex(512);
dim3 gridTex_u((sampleCnt_u + blockTex.x - 1) / blockTex.x);
dim3 gridTex_v((sampleCnt_v + blockTex.x - 1) / blockTex.x);
// 记录用时
double time_cost_device;
if (recordTime) time_cost_device = utils::get_time_windows();
g_derTexture<<<gridTex_u, blockTex>>>(d_derTexture_u, d_nTexture1_u, d_knots_u, pointsCnt_u, knotsCnt_u,
sampleCnt_u);
g_derTexture<<<gridTex_v, blockTex>>>(d_derTexture_v, d_nTexture1_v, d_knots_v, pointsCnt_v, knotsCnt_v,
sampleCnt_v);
cudaDeviceSynchronize();
g_derivative<<<grid, block>>>(d_derivatives, d_derTexture_u, d_derTexture_v, d_nTexture_u, d_nTexture_v, d_points,
pointsCnt_u,
pointsCnt_v, POINT_SIZE, knots_u[knotsCnt_u - 1], knots_v[knotsCnt_v - 1],
sampleCnt_u,
sampleCnt_v);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
time_cost_device = utils::get_time_windows() - time_cost_device;
printf("GPU time cost of surface first derivative calculating for %d samples: %lf\n", sampleCnt_u * sampleCnt_v,
time_cost_device);
}
cudaFree(d_derTexture_u);
cudaFree(d_derTexture_v);
}
__host__ void NurbsCurve::Evaluator::derivative(int sampleCnt) {
// 先完成evaluation
evaluate(sampleCnt);
if (POINT_SIZE != controlPoints[0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return;
}
float *d_derTexture = nullptr;
const int pointsCnt = controlPoints.size();
const int knotsCnt = knots.size();
cudaMalloc((void **) &d_derTexture, sampleCnt * pointsCnt * sizeof(float));
// 构造线程层级
dim3 block(32, 32);
dim3 grid((sampleCnt + block.x * block.y - 1) / (block.x * block.y));
// 构造g_basisTexture线程层级
dim3 blockTex(512);
dim3 gridTex((sampleCnt + blockTex.x - 1) / blockTex.x);
// 构造切向量计算结果
myCudaFree(d_derivatives);
cudaMalloc((void **) &d_derivatives, sampleCnt * 3 * sizeof(float)); // 每个采用所求的切向量是一个三维向量
// 记录用时
double time_cost_device;
if (recordTime) time_cost_device = utils::get_time_windows();
g_derTexture<<<gridTex, blockTex>>>(d_derTexture, d_nTexture1, d_knots, pointsCnt, knotsCnt, sampleCnt);
cudaDeviceSynchronize();
g_derivative<<<grid, block>>>(d_derivatives, d_derTexture, d_nTexture, d_points, pointsCnt, POINT_SIZE,
knots[knotsCnt - 1], sampleCnt);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
time_cost_device = utils::get_time_windows() - time_cost_device;
printf("GPU time cost of curve first derivative calculating for %d samples: %lf\n", sampleCnt,
time_cost_device);
}
cudaFree(d_derTexture);
}
__host__ void NurbsSurface::Evaluator::curvature(int sampleCnt_u, int sampleCnt_v) {
// 先计算切向量
derivative(sampleCnt_u, sampleCnt_v);
if (POINT_SIZE != controlPoints[0][0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return;
}
// 构造线程层级
dim3 block(32, 32);
dim3 grid((sampleCnt_u + block.x - 1) / block.x, (sampleCnt_v + block.y - 1) / block.y);
// 记录用时
double time_cost_device;
if (recordTime) time_cost_device = utils::get_time_windows();
g_curvature<<<grid, block>>>(d_derivatives, sampleCnt_u, sampleCnt_v, knots_u[knots_u.size() - 1],
knots_v[knots_v.size() - 1]);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
time_cost_device = utils::get_time_windows() - time_cost_device;
printf("GPU time cost of surface second derivative calculating for %d samples: %lf\n",
sampleCnt_u * sampleCnt_v,
time_cost_device);
}
}
__host__ void NurbsCurve::Evaluator::curvature(int sampleCnt) {
// 先计算切向量
derivative(sampleCnt);
if (POINT_SIZE != controlPoints[0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return;
}
// 构造线程层级
dim3 block(32, 32);
dim3 grid((sampleCnt + block.x * block.y - 1) / (block.x * block.y));
// 记录用时
double time_cost_device;
if (recordTime) time_cost_device = utils::get_time_windows();
g_curvature<<<grid, block>>>(d_derivatives, sampleCnt, knots[knots.size() - 1]);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
time_cost_device = utils::get_time_windows() - time_cost_device;
printf("GPU time cost of curve second derivative calculating for %d samples: %lf\n", sampleCnt,
time_cost_device);
}
}
//__global__ void
//NurbsSurface::g_evaluate(const float *d_points, const float *d_knots_u, const float *d_knots_v,
// int d_pointsCnt_u,
// int d_pointsCnt_v, int d_POINT_SIZE, int d_knotsCnt_u, int d_knotsCnt_v,
// int d_sampleCnt_u, int d_sampleCnt_v) {
//// printf(" surface calculating... \n");
// // 二维grid和二维的block
// int ix = int(blockIdx.x * blockDim.x + threadIdx.x);
// int iy = int(blockIdx.y * blockDim.y + threadIdx.y);
//
// float d_paramCeil_u = d_knots_u[d_knotsCnt_u - 1];
// float d_paramCeil_v = d_knots_v[d_knotsCnt_v - 1];
//
// float u = ix * d_paramCeil_u / (d_sampleCnt_u - 1);
// float v = iy * d_paramCeil_v / (d_sampleCnt_v - 1);
//
// if (u > 1.0 * d_paramCeil_u || v > 1.0 * d_paramCeil_v) {
// return;
// }
//
// int d_degree_u = d_knotsCnt_u - 1 - d_pointsCnt_u;
// int d_degree_v = d_knotsCnt_v - 1 - d_pointsCnt_v;
// // 注意,在device中,全局内存还是以malloc和free的方式分配和回收的,而不是使用cudaMalloc和cudaFree
// auto *N_Texture_U = (float *) malloc((d_degree_u + 1) * (d_knotsCnt_u - 1) * sizeof(float));
// auto *N_Texture_V = (float *) malloc((d_degree_v + 1) * (d_knotsCnt_v - 1) * sizeof(float));
// d_basisFunction(N_Texture_U, d_knots_u, u, d_degree_u, d_knotsCnt_u);
// d_basisFunction(N_Texture_V, d_knots_v, v, d_degree_v, d_knotsCnt_v);
// float x = 0., y = 0., z = 0.;
// for (int i = 0; i < d_pointsCnt_u; i++) {
// for (int j = 0; j < d_pointsCnt_v; j++) {
// float N_U = N_Texture_U[d_degree_u * (d_knotsCnt_u - 1) + i];
// float N_V = N_Texture_V[d_degree_v * (d_knotsCnt_v - 1) + j];
// int idx = (i * d_pointsCnt_v + j) * d_POINT_SIZE;
// x += N_U * N_V * d_points[idx];
// y += N_U * N_V * d_points[idx + 1];
// z += N_U * N_V * d_points[idx + 2];
// }
// }
// printf("(%g, %g)-->(%g, %g, %g)\n", u, v, x, y, z); // %g输出,舍弃无意义的0
// free(N_Texture_U);
// free(N_Texture_V);
//}
__global__ void
NurbsSurface::g_evaluate(const float *d_nTexture_u, const float *d_nTexture_v, const float *d_points, int d_pointsCnt_u,
int d_pointsCnt_v, int d_POINT_SIZE, float d_lastKnot_u, float d_lastKnot_v, int d_sampleCnt_u,
int d_sampleCnt_v) {
// 二维grid和二维的block
int ix = blockIdx.x * blockDim.x + threadIdx.x;
int iy = blockIdx.y * blockDim.y + threadIdx.y;
float u = ix * d_lastKnot_u / (d_sampleCnt_u - 1);
float v = iy * d_lastKnot_v / (d_sampleCnt_v - 1);
if (u > 1.0 * d_lastKnot_u || v > 1.0 * d_lastKnot_v) {
return;
}
float x = 0., y = 0., z = 0., sumW = 0.;
for (int i = 0; i < d_pointsCnt_u; i++) {
float N_U = d_nTexture_u[ix * d_pointsCnt_u + i];
for (int j = 0; j < d_pointsCnt_v; j++) {
float N_V = d_nTexture_v[iy * d_pointsCnt_v + j];
int idx = (i * d_pointsCnt_v + j) * d_POINT_SIZE;
float w = d_points[idx + 3];
x += N_U * N_V * w * d_points[idx];
y += N_U * N_V * w * d_points[idx + 1];
z += N_U * N_V * w * d_points[idx + 2];
sumW += N_U * N_V * w;
}
}
x = x / sumW;
y = y / sumW;
z = z / sumW;
// printf("(%g, %g)-->(%g, %g, %g)\n", u, v, x, y, z); // %g输出,舍弃无意义的0
}
__global__ void
NurbsSurface::g_derivative(float *derivatives, const float *derTexture_u, const float *derTexture_v,
const float *nTexture_u, const float *nTexture_v, const float *d_points, int d_pointsCnt_u,
int d_pointsCnt_v, int d_POINT_SIZE, float d_lastKnot_u, float d_lastKnot_v,
int d_sampleCnt_u, int d_sampleCnt_v) {
// 二维grid和二维的block
int ix = blockIdx.x * blockDim.x + threadIdx.x;
int iy = blockIdx.y * blockDim.y + threadIdx.y;
if (ix >= d_sampleCnt_u || iy >= d_sampleCnt_v) {
return;
}
float u = ix * d_lastKnot_u / (d_sampleCnt_u - 1);
float v = iy * d_lastKnot_v / (d_sampleCnt_v - 1);
float nubsPdx_u = 0., nubsPdy_u = 0, nubsPdz_u = 0., nubsPdw_u = 0.;
float nubsPdx_v = 0., nubsPdy_v = 0, nubsPdz_v = 0., nubsPdw_v = 0.;
for (int i = 0; i < d_pointsCnt_u; i++) {
for (int j = 0; j < d_pointsCnt_u; j++) {
int baseIdx = (i * d_pointsCnt_v + j) * d_POINT_SIZE;
float factor_u = derTexture_u[ix * d_pointsCnt_u + i] * nTexture_v[iy * d_pointsCnt_v + j];
float factor_v = derTexture_v[iy * d_pointsCnt_v + j] * nTexture_u[ix * d_pointsCnt_u + i];
float wij = d_points[baseIdx + 3];
nubsPdx_u += factor_u * wij * d_points[baseIdx];
nubsPdy_u += factor_u * wij * d_points[baseIdx + 1];
nubsPdz_u += factor_u * wij * d_points[baseIdx + 2];
nubsPdw_u += factor_u * wij;
nubsPdx_v += factor_v * wij * d_points[baseIdx];
nubsPdy_v += factor_v * wij * d_points[baseIdx + 1];
nubsPdz_v += factor_v * wij * d_points[baseIdx + 2];
nubsPdw_v += factor_v * wij;
}
}
float x = 0., y = 0., z = 0., w = 0.;
for (int i = 0; i < d_pointsCnt_u; i++) {
float N_U = nTexture_u[ix * d_pointsCnt_u + i];
for (int j = 0; j < d_pointsCnt_v; j++) {
float N_V = nTexture_v[iy * d_pointsCnt_v + j];
int idx = (i * d_pointsCnt_v + j) * d_POINT_SIZE;
float wij = d_points[idx + 3];
x += N_U * N_V * wij * d_points[idx];
y += N_U * N_V * wij * d_points[idx + 1];
z += N_U * N_V * wij * d_points[idx + 2];
w += N_U * N_V * wij;
}
}
float w2 = w * w;
float pdx_u = (nubsPdx_u * w - x * nubsPdw_u) / w2;
float pdy_u = (nubsPdy_u * w - y * nubsPdw_u) / w2;
float pdz_u = (nubsPdz_u * w - z * nubsPdw_u) / w2;
float pdx_v = (nubsPdx_v * w - x * nubsPdw_v) / w2;
float pdy_v = (nubsPdy_v * w - y * nubsPdw_v) / w2;
float pdz_v = (nubsPdz_v * w - z * nubsPdw_v) / w2;
// float pdz_u = (nubsPdz_u * w - z )
int baseIdx = (ix * d_sampleCnt_v + iy) * 6;
derivatives[baseIdx] = pdx_u;
derivatives[baseIdx + 1] = pdy_u;
derivatives[baseIdx + 2] = pdz_u;
derivatives[baseIdx + 3] = pdx_v;
derivatives[baseIdx + 4] = pdy_v;
derivatives[baseIdx + 5] = pdz_v;
float x_n = pdy_u * pdz_v - pdy_v * pdz_u, y_n = pdx_v * pdz_u - pdx_u * pdz_v, z_n =
pdx_u * pdy_v - pdx_v * pdy_u; // 叉乘得到法向量
if((ix == 8 && iy == 9) || (ix == 7 && iy == 9) || (ix == 9 && iy == 9) || (ix == 8 && iy == 8) || (ix == 8 && iy == 10))
printf("(%g,%g)-->u:(%g, %g, %g), v:(%g,%g,%g), normal:(%g,%g,%g)\n", u, v, pdx_u, pdy_u, pdz_u, pdx_v, pdy_v,
pdz_v, x_n, y_n, z_n);
}
__global__ void
NurbsSurface::g_curvature(const float *derivatives, int sampleCnt_u, int sampleCnt_v, float lastKnot_u,
float lastKnot_v) {
// 二维grid和二维的block
int ix = blockIdx.x * blockDim.x + threadIdx.x;
int iy = blockIdx.y * blockDim.y + threadIdx.y;
if (ix >= sampleCnt_u || iy >= sampleCnt_v) {
return;
}
float step_u = lastKnot_u / (sampleCnt_u - 1), step_v = lastKnot_v / (sampleCnt_v - 1);
float u = ix * step_u, v = iy * step_v;
int baseIdx = (ix * sampleCnt_v + iy) * 6;
int lastBaseIdx_u = ((ix - 1) * sampleCnt_v + iy) * 6, nextBaseIdx_u = ((ix + 1) * sampleCnt_v + iy) * 6;
int lastBaseIdx_v = (ix * sampleCnt_v + iy - 1) * 6, nextBaseIdx_v = (ix * sampleCnt_v + iy + 1) * 6;
// printf("(%g,%g)-->u:(%g, %g, %g), v:(%g,%g,%g)\n", u, v, derivatives[baseIdx], derivatives[baseIdx + 1],
// derivatives[baseIdx + 2], derivatives[baseIdx + 3], derivatives[baseIdx + 4], derivatives[baseIdx + 5]);
float sndPdx_uu, sndPdy_uu, sndPdz_uu, sndPdx_vv, sndPdy_vv, sndPdz_vv; // 二阶导
float sndPdx_uv, sndPdy_uv, sndPdz_uv, sndPdx_vu, sndPdy_vu, sndPdz_vu;
if (ix == 0) {
sndPdx_uu = (derivatives[nextBaseIdx_u] - derivatives[baseIdx]) / step_u;
sndPdy_uu = (derivatives[nextBaseIdx_u + 1] - derivatives[baseIdx + 1]) / step_u;
sndPdz_uu = (derivatives[nextBaseIdx_u + 2] - derivatives[baseIdx + 2]) / step_u;
sndPdx_vu = (derivatives[nextBaseIdx_u + 3] - derivatives[baseIdx + 3]) / step_u;
sndPdy_vu = (derivatives[nextBaseIdx_u + 4] - derivatives[baseIdx + 4]) / step_u;
sndPdz_vu = (derivatives[nextBaseIdx_u + 5] - derivatives[baseIdx + 5]) / step_u;
} else if (ix == sampleCnt_u - 1) {
sndPdx_uu = (derivatives[baseIdx] - derivatives[lastBaseIdx_u]) / step_u;
sndPdy_uu = (derivatives[baseIdx + 1] - derivatives[lastBaseIdx_u + 1]) / step_u;
sndPdz_uu = (derivatives[baseIdx + 2] - derivatives[lastBaseIdx_u + 2]) / step_u;
sndPdx_vu = (derivatives[baseIdx + 3] - derivatives[lastBaseIdx_u + 3]) / step_u;
sndPdy_vu = (derivatives[baseIdx + 4] - derivatives[lastBaseIdx_u + 4]) / step_u;
sndPdz_vu = (derivatives[baseIdx + 5] - derivatives[lastBaseIdx_u + 5]) / step_u;
} else {
sndPdx_uu = (derivatives[nextBaseIdx_u] - derivatives[lastBaseIdx_u]) / (2 * step_u);
sndPdy_uu = (derivatives[nextBaseIdx_u + 1] - derivatives[lastBaseIdx_u + 1]) / (2 * step_u);
sndPdz_uu = (derivatives[nextBaseIdx_u + 2] - derivatives[lastBaseIdx_u + 2]) / (2 * step_u);
sndPdx_vu = (derivatives[nextBaseIdx_u + 3] - derivatives[lastBaseIdx_u + 3]) / (2 * step_u);
sndPdy_vu = (derivatives[nextBaseIdx_u + 4] - derivatives[lastBaseIdx_u + 4]) / (2 * step_u);
sndPdz_vu = (derivatives[nextBaseIdx_u + 5] - derivatives[lastBaseIdx_u + 5]) / (2 * step_u);
}
if (iy == 0) {
sndPdx_vv = (derivatives[nextBaseIdx_v + 3] - derivatives[baseIdx + 3]) / step_v;
sndPdy_vv = (derivatives[nextBaseIdx_v + 4] - derivatives[baseIdx + 4]) / step_v;
sndPdz_vv = (derivatives[nextBaseIdx_v + 5] - derivatives[baseIdx + 5]) / step_v;
sndPdx_uv = (derivatives[nextBaseIdx_v] - derivatives[baseIdx]) / step_v;
sndPdy_uv = (derivatives[nextBaseIdx_v + 1] - derivatives[baseIdx + 1]) / step_v;
sndPdz_uv = (derivatives[nextBaseIdx_v + 2] - derivatives[baseIdx + 2]) / step_v;
} else if (iy == sampleCnt_v - 1) {
sndPdx_vv = (derivatives[baseIdx + 3] - derivatives[lastBaseIdx_v + 3]) / step_v;
sndPdy_vv = (derivatives[baseIdx + 4] - derivatives[lastBaseIdx_v + 4]) / step_v;
sndPdz_vv = (derivatives[baseIdx + 5] - derivatives[lastBaseIdx_v + 5]) / step_v;
sndPdx_uv = (derivatives[baseIdx] - derivatives[lastBaseIdx_v]) / step_v;
sndPdy_uv = (derivatives[baseIdx + 1] - derivatives[lastBaseIdx_v + 1]) / step_v;
sndPdz_uv = (derivatives[baseIdx + 2] - derivatives[lastBaseIdx_v + 2]) / step_v;
} else {
sndPdx_vv = (derivatives[nextBaseIdx_v + 3] - derivatives[lastBaseIdx_v + 3]) / (2 * step_v);
sndPdy_vv = (derivatives[nextBaseIdx_v + 4] - derivatives[lastBaseIdx_v + 4]) / (2 * step_v);
sndPdz_vv = (derivatives[nextBaseIdx_v + 5] - derivatives[lastBaseIdx_v + 5]) / (2 * step_v);
sndPdx_uv = (derivatives[nextBaseIdx_v] - derivatives[lastBaseIdx_v]) / (2 * step_v);
sndPdy_uv = (derivatives[nextBaseIdx_v + 1] - derivatives[lastBaseIdx_v + 1]) / (2 * step_v);
sndPdz_uv = (derivatives[nextBaseIdx_v + 2] - derivatives[lastBaseIdx_v + 2]) / (2 * step_v);
}
float uvx = (sndPdx_uv + sndPdx_vu) / 2, uvy = (sndPdy_uv + sndPdy_vu) / 2, uvz = (sndPdz_uv + sndPdz_vu) / 2;
normalization(sndPdx_uu, sndPdy_uu, sndPdz_uu);
normalization(uvx, uvy, uvz);
normalization(sndPdx_vv, sndPdy_vv, sndPdz_vv);
if(ix == 8 && iy == 9)
printf("(%g, %g) --> uu: (%g, %g, %g), uv: (%g, %g, %g), vv: (%g, %g, %g)\n", u, v, sndPdx_uu, sndPdy_uu, sndPdz_uu,
uvx, uvy, uvz, sndPdx_vv, sndPdy_vv, sndPdz_vv);
}
__global__ void
NurbsCurve::g_evaluate(const float *NTexture, const float *d_points, const int d_pointsCnt,
const int d_POINT_SIZE, const float d_lastKnot, const int d_sampleCnt) {
// printf(" curve calculating... \n");
// 二维grid和一维的block
// int idx = (blockIdx.y * gridDim.x + blockIdx.x) * blockDim.x + threadIdx.x;
// 二维block和一维grid
int idx = blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
float u = idx * d_lastKnot / (d_sampleCnt - 1);
if (u > 1.0 * d_lastKnot) {
return;
}
//
// int d_degree = d_knotsCnt - 1 - d_pointsCnt;
// // 注意,在device中,全局内存还是以malloc和free的方式分配和回收的,而不是使用cudaMalloc和cudaFree
// auto *N_dp = (float *) malloc((d_degree + 1) * (d_knotsCnt - 1) * sizeof(float));
// d_basisFunction(N_dp, d_knots, u, d_degree, d_knotsCnt);
float x = 0., y = 0., z = 0., sumW = 0.;
for (int i = 0; i < d_pointsCnt; i++) {
float N = NTexture[idx * d_pointsCnt + i];
int baseIdx = i * d_POINT_SIZE;
float w = d_points[baseIdx + 3];
x += N * w * d_points[baseIdx];
y += N * w * d_points[baseIdx + 1];
z += N * w * d_points[baseIdx + 2];
sumW += N * w;
}
x = x / sumW;
y = y / sumW;
z = z / sumW;
printf("(%g)-->(%g, %g, %g)\n", u, x, y, z); // %g输出,舍弃无意义的0
}
__global__ void
NurbsCurve::g_derivative(float *derivatives, const float *derTexture, const float *nTexture, const float *d_points,
int d_pointsCnt, int d_POINT_SIZE,
float d_lastKnot, int d_sampleCnt) {
// 二维block和一维grid
int idx = blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
if (idx >= d_sampleCnt) return;
float u = idx * d_lastKnot / (d_sampleCnt - 1);
float nubs_dx = 0., nubs_dy = 0., nubs_dz = 0., nubs_dw = 0.;
// printf("POINT_SIZE: %d\n", d_POINT_SIZE);
for (int i = 0; i < d_pointsCnt; i++) {
int baseIdx = i * d_POINT_SIZE;
float nFactor = derTexture[idx * d_pointsCnt + i];
float wi = d_points[baseIdx + 3];
nubs_dx += nFactor * wi * d_points[baseIdx];
nubs_dy += nFactor * wi * d_points[baseIdx + 1];
nubs_dz += nFactor * wi * d_points[baseIdx + 2];
nubs_dw += nFactor * wi;
// printf("(x, y, z): (%g, %g, %g)\n", d_points[baseIdx], d_points[baseIdx + 1], d_points[baseIdx + 2]);
}
float x = 0., y = 0., z = 0., w = 0.;
for (int i = 0; i < d_pointsCnt; i++) {
float N = nTexture[idx * d_pointsCnt + i];
int baseIdx = i * d_POINT_SIZE;
float wi = d_points[baseIdx + 3];
x += N * wi * d_points[baseIdx];
y += N * wi * d_points[baseIdx + 1];
z += N * wi * d_points[baseIdx + 2];
w += N * wi;
}
float dx = (nubs_dx * w - x * nubs_dw) / (w * w);
float dy = (nubs_dy * w - y * nubs_dw) / (w * w);
float dz = (nubs_dz * w - z * nubs_dw) / (w * w);
int baseIdx = idx * 3;
derivatives[baseIdx] = dx;
derivatives[baseIdx + 1] = dy;
derivatives[baseIdx + 2] = dz;
printf("(%g)-->(%g, %g, %g)\n", u, dx, dy, dz);
}
__global__ void NurbsCurve::g_curvature(const float *derivatives, int sampleCnt, float lastKnot) {
// 二维block和一维grid
int idx = blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
if (idx >= sampleCnt) return;
float step = lastKnot / (sampleCnt - 1);
float u = idx * step;
float sndPdx, sndPdy, sndPdz; // 二阶导
int baseIdx = idx * 3, lastBaseIdx = (idx - 1) * 3, nextBaseIdx = (idx + 1) * 3;
if (idx == 0) {
sndPdx = (derivatives[nextBaseIdx] - derivatives[baseIdx]) / step;
sndPdy = (derivatives[nextBaseIdx + 1] - derivatives[baseIdx + 1]) / step;
sndPdz = (derivatives[nextBaseIdx + 2] - derivatives[baseIdx + 2]) / step;
} else if (idx == sampleCnt - 1) {
sndPdx = (derivatives[baseIdx] - derivatives[lastBaseIdx]) / step;
sndPdy = (derivatives[baseIdx + 1] - derivatives[lastBaseIdx + 1]) / step;
sndPdz = (derivatives[baseIdx + 2] - derivatives[lastBaseIdx + 2]) / step;
} else {
sndPdx = (derivatives[nextBaseIdx] - derivatives[lastBaseIdx]) / (2 * step);
sndPdy = (derivatives[nextBaseIdx + 1] - derivatives[lastBaseIdx + 1]) / (2 * step);
sndPdz = (derivatives[nextBaseIdx + 2] - derivatives[lastBaseIdx + 2]) / (2 * step);
}
printf("%g --> (%g, %g, %g)\n", u, sndPdx, sndPdy, sndPdz);
}
__global__ void g_basisTexture(float *nTexture, float *nTexture1, const float *d_knots, int d_pointsCnt, int d_knotsCnt,
int d_sampleCnt) {
// 一维grid和一维block
int idx = blockIdx.x * blockDim.x + threadIdx.x; // 采样点编号
float d_paramCeil = d_knots[d_knotsCnt - 1];
float u = idx * d_paramCeil / (d_sampleCnt - 1);
if (u > 1.0 * d_paramCeil) {
return;
}
int d_degree = d_knotsCnt - 1 - d_pointsCnt;
auto *N_dp = (float *) malloc((d_degree + 1) * (d_knotsCnt - 1) * sizeof(float));
d_basisFunction(N_dp, d_knots, u, d_degree, d_knotsCnt);
for (int i = 0; i < d_pointsCnt; i++) {
nTexture[idx * d_pointsCnt + i] = N_dp[d_degree * (d_knotsCnt - 1) + i];
nTexture1[idx * (d_pointsCnt + 1) + i] = N_dp[(d_degree - 1) * (d_knotsCnt - 1) + i];
// printf("nTexture1: %g ", nTexture1[idx * (d_pointsCnt + 1) + i]);
}
nTexture1[idx * (d_pointsCnt + 1) + d_pointsCnt] = N_dp[(d_degree - 1) * (d_knotsCnt - 1) +
d_pointsCnt]; // nTexture1多记录一列数据
free(N_dp);
}
__global__ void
g_derTexture(float *derTexture, const float *nTexture1, const float *d_knots, int d_pointsCnt, int d_knotsCnt,
int d_sampleCnt) {
// 一维grid和一维block
int idx = blockIdx.x * blockDim.x + threadIdx.x; // 采样点编号
if (idx >= d_sampleCnt) {
return;
}
int degree = d_knotsCnt - 1 - d_pointsCnt;
// printf("degree: %d\n", degree);
for (int i = 0; i < d_pointsCnt; i++) {
float left = d_floatEqual(d_knots[i + degree], d_knots[i]) ? 0 :
nTexture1[idx * (d_pointsCnt + 1) + i] * (degree - 1) / (d_knots[i + degree] - d_knots[i]);
float right = d_floatEqual(d_knots[i + degree + 1], d_knots[i + 1]) ? 0 :
nTexture1[idx * (d_pointsCnt + 1) + i + 1] * (degree - 1) /
(d_knots[i + degree + 1] - d_knots[i + 1]);
derTexture[idx * d_pointsCnt + i] = left - right;
// printf("<%d, %d> -- %g \n", idx, i, left - right);
// printf("nTex1: %g \n", nTexture1[idx * (d_pointsCnt + 1) + i]);
}
}
__host__ NurbsCurve::Evaluator::Evaluator(std::vector<std::vector<float>> controlPoints,
std::vector<float> knots) {
this->knots = std::move(knots);
this->controlPoints = std::move(controlPoints);
recordTime = false;
d_nTexture = nullptr;
d_nTexture1 = nullptr;
d_points = nullptr;
d_knots = nullptr;
d_derivatives = nullptr;
}
__device__ void d_basisFunction(float *N_Texture, const float *knots, float u, int degree, int d_knotsCnt) {
int m = d_knotsCnt - 1;
for (int p = 0; p <= degree; p++) {
for (int i = 0; i + p <= m - 1; i++) {
if (p == 0) {
if ((u > knots[i] || d_floatEqual(u, knots[i])) && (u < knots[i + 1])
||
d_floatEqual(u, knots[i + 1]) && d_floatEqual(u, knots[m])) {
N_Texture[p * m + i] = 1.0;
} else {
N_Texture[p * m + i] = 0.0;
}
} else {
float Nip_1 = N_Texture[(p - 1) * m + i];
float Ni1p_1 = N_Texture[(p - 1) * m + i + 1];
float left = d_floatEqual(knots[i + p], knots[i]) ? 0 : (u - knots[i]) * Nip_1 /
(knots[i + p] - knots[i]);
float right = d_floatEqual(knots[i + p + 1], knots[i + 1]) ? 0 : (knots[i + p + 1] - u) * Ni1p_1 /
(knots[i + p + 1] - knots[i + 1]);
N_Texture[p * m + i] = left + right;
}
}
}
}
__device__ bool d_floatEqual(float a, float b) {
return abs(a - b) < 0.00001;
}
__host__ void myCudaFree(float *&p) {
if (p != nullptr) {
cudaFree(p);
p = nullptr;
}
}
void NurbsCurve::Evaluator::setRecordTime(bool r) {
recordTime = r;
}
void NurbsSurface::Evaluator::setRecordTime(bool r) {
recordTime = r;
}
NurbsSurface::Evaluator::~Evaluator() {
myCudaFree(d_nTexture_u);
myCudaFree(d_nTexture_v);
myCudaFree(d_nTexture1_u);
myCudaFree(d_nTexture1_v);
myCudaFree(d_points);
myCudaFree(d_knots_u);
myCudaFree(d_knots_v);
cudaDeviceReset();
}
NurbsCurve::Evaluator::~Evaluator() {
myCudaFree(d_nTexture);
myCudaFree(d_nTexture1);
myCudaFree(d_points);
myCudaFree(d_knots);
cudaDeviceReset();
}

191
NurbsEvaluator.cuh

@ -1,191 +0,0 @@
#ifndef UNTITLED1_NURBSEVALUATOR_CUH
#define UNTITLED1_NURBSEVALUATOR_CUH
#include <cuda_runtime.h>
#include <thrust/device_vector.h>
#include <vector>
#include <map>
const int POINT_SIZE = 4;
/**
* 保证释放后的指针指向空。这样一来保证指针不乱指,free的时候不会出错、二来可以判断指针是否已经free
* 注意指针是引用传参,因为要把指针本身置空
*/
__host__ void myCudaFree(float *&p);
namespace NurbsSurface {
/**
* 曲线计算的核函数
* @param d_pointSize 点的大小(3: [x, y, z] | 4:[x, y, z, w])
*/
__global__ static void
g_evaluate(const float *d_nTexture_u, const float *d_nTexture_v, const float *d_points, int d_pointsCnt_u,
int d_pointsCnt_v, int d_pointSize, float d_lastKnot_u, float d_lastKnot_v, int d_sampleCnt_u,
int d_sampleCnt_v);
__global__ static void
g_derivative(float *derivatives, const float *derTexture_u, const float *derTexture_v, const float *nTexture_u,
const float *nTexture_v,
const float *d_points, int d_pointsCnt_u, int d_pointsCnt_v, int d_pointSize, float d_lastKnot_u,
float d_lastKnot_v, int d_sampleCnt_u, int d_sampleCnt_v);
__global__ static void
g_curvature(const float *derivatives, int sampleCnt_u, int sampleCnt_v, float lastKnot_u, float lastKnot_v);
class Evaluator {
private:
std::vector<std::vector<std::vector<float>>> controlPoints;
float *d_points;
std::vector<float> knots_u;
std::vector<float> knots_v;
float *d_knots_u;
float *d_knots_v;
bool recordTime;
float *d_nTexture_u; // u方向指向度为p时的device中的nurbs基函数矩阵
float *d_nTexture_v; // v方向指向度为p时的device中的nurbs基函数矩阵
float *d_nTexture1_u; // u方向指向度为p-1时的device中的nurbs基函数矩阵
float *d_nTexture1_v; // v方向指向度为p-1时的device中的nurbs基函数矩阵
float *d_derivatives; // 一阶导计算结果
// int sampleCnt_u;
// int sampleCnt_v;
public:
/**
* 构造函数
* @param controlPoints 控制点矩阵[pointsCnt_u][pointsCnt_v][3]
* @param knots_u u方向knots
* @param knots_v v方向knots
*/
__host__ explicit Evaluator(std::vector<std::vector<std::vector<float>>> controlPoints,
std::vector<float> knots_u, std::vector<float> knots_v);
/**
* 供外部CPU程序使用的、负责调用gpu并行计算的方法
* @param sampleCnt_u u方向采样数目
* @param sampleCnt_v v方向采样数目
* @return 由 map 组成的vector{<<u, v>, {x, y, z}>}
*/
__host__ std::vector<std::map<std::pair<float, float>, std::vector<float>>>
evaluate(int sampleCnt_u_, int sampleCnt_v_);
/**
* 供外部CPU程序使用的、负责调用gpu并行计算切向量的方法
*/
__host__ void derivative(int sampleCnt_u, int sampleCnt_v);
/**
* 供外部CPU程序使用的、负责调用gpu并行计算二阶导的方法
*/
__host__ void curvature(int sampleCnt_u, int sampleCnt_v);
void setRecordTime(bool r);
~Evaluator();
};
}
/**
* 曲线部分
*/
namespace NurbsCurve {
__global__ void g_test(float *nTexture);
/**
* 曲线计算的核函数
* @param d_pointSize 点的大小(3: [x, y, z] | 4:[x, y, z, w])
*/
__global__ static void
g_evaluate(const float *NTexture, const float *d_points, int d_pointsCnt, int d_pointSize,
float d_lastKnot, int d_sampleCnt);
__global__ static void
g_derivative(float *derivatives, const float *derTexture, const float *nTexture, const float *d_points,
int d_pointsCnt, int d_pointSize, float d_lastKnot,
int d_sampleCnt);
__global__ static void g_curvature(const float *derivatives, int sampleCnt, float lastKnot);
class Evaluator {
private:
std::vector<std::vector<float>> controlPoints;
std::vector<float> knots;
float *d_knots;
float *d_points;
bool recordTime;
float *d_nTexture; // 指向度为p时的device中的nurbs基函数矩阵
float *d_nTexture1; // 指向度为p-1时的device中的nurbs基函数矩阵
float *d_derivatives{}; // 一阶导计算结果
public:
/**
* 构造函数
* @param controlPoints 控制点矩阵[pointsCnt][3]
*/
__host__ explicit Evaluator(std::vector<std::vector<float>> controlPoints, std::vector<float> knots);
/**
* 供外部CPU程序使用的、负责调用gpu并行进行evaluation的方法
* @param sampleCnt_ 在参数域内均匀采样的采样数,它会更新成员变量中的sampleCnt
* @return 由 map 组成的vector{<u, {x, y, z}>}
*/
__host__ std::vector<std::map<float, std::vector<float>>> evaluate(int sampleCnt_);
/**
* 供外部CPU程序使用的、负责调用gpu并行计算切向量的方法
*/
__host__ void derivative(int sampleCnt);
/**
* 供外部CPU程序使用的、负责调用gpu并行计算二阶导的方法
*/
__host__ void curvature(int sampleCnt);
__host__ ~Evaluator();
void setRecordTime(bool r);
};
}
/**
* 计算并保存基函数值
* @param nTexture 记录度数为p的基函数值,规模为【sampleCnt,pointsCnt】
* @param nTexture1 记录度数为p-1的基函数值,规模为【sampleCnt+1,pointsCnt】
*/
__global__ static void
g_basisTexture(float *nTexture, float *nTexture1, const float *d_knots, int d_pointsCnt, int d_knotsCnt,
int d_sampleCnt);
/**
* 计算并保存基函数对采样点切向量的分量值
* @param derTexture 记录度数为p的Nurbs基函数对采样点切向量的分量值,大小为【sampleCnt,pointsCnt】
* @param nTexture1 度数为p-1的基函数值,规模为【sampleCnt+1,pointsCnt】
*/
__global__ static void
g_derTexture(float *derTexture, const float *nTexture1, const float *d_knots, int d_pointsCnt, int d_knotsCnt,
int d_sampleCnt);
/**
* 当u值已知时,根据基函数N的递推表达式,采用动态规划的方式求解N值
* @param N_Texture 结果返回在N_Texture中
*/
__device__ void d_basisFunction(float *nTexture, const float *knots, float u, int degree, int d_knotsCnt);
/**
* device中判断两个浮点数是否相等。与CPU中一样,GPU中的浮点数也存在很小的误差,直接使用==判断往往容易将相等误判为不等
* @return true:相等
*/
__device__ bool d_floatEqual(float a, float b);
#endif

6
README.md

@ -15,13 +15,15 @@ A tool for evaluating multiple NURBS curve/surface points using the GPU.
根据CMake构建项目,运行main文件即可生成可执行文件
### 作为依赖使用
1. CMakeLists.txt中注释以下代码,不再生成可执行文件
```cmake
add_executable(NurbsEvaluator main.cpp NurbsEvaluator.cu NurbsEvaluator.cuh utils.cpp utils.h)
add_executable(NurbsEvaluator src/main.cpp src/utils.cpp include/utils.h)
```
2. CMakeLists.txt中取消注释以下代码,表示需要生成静态库。构建项目。
```cmake
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/lib)
add_library(NurbsEvaluator NurbsEvaluator.cu NurbsEvaluator.cuh utils.cpp utils.h)
add_library(NurbsEvaluator src/utils.cpp include/utils.h)
```
3. 原项目连接到生成的静态库目录。如果是由CMake构建,可以用 target_link_libraries 指向依赖(.lib),用 target_include_directories 指向头文件目录。
4. 使用.cu文件调用NurbsEvaluator

23
include/device/DeviceUtils.cuh

@ -0,0 +1,23 @@
//
// Created by 14727 on 2022/12/9.
//
#ifndef NURBSEVALUATOR_DEVICEUTILS_CUH
#define NURBSEVALUATOR_DEVICEUTILS_CUH
__device__ void d_safeFree(float * &p);
/**
* device中判断两个浮点数是否相等。与CPU中一样,GPU中的浮点数也存在很小的误差,直接使用==判断往往容易将相等误判为不等
* @return true:相等
*/
__device__ bool d_floatEqual(float a, float b);
/**
* 正则归一化,一般用于方向向量的归一化
*/
__device__ void normalization(float &a, float &b, float &c);
#endif //NURBSEVALUATOR_DEVICEUTILS_CUH

32
include/device/NurbsCommon.cuh

@ -0,0 +1,32 @@
//
// Created by 14727 on 2022/11/19.
//
#ifndef NURBSEVALUATOR_NURBSCOMMON_CUH
#define NURBSEVALUATOR_NURBSCOMMON_CUH
/**
* 当u值已知时,根据基函数N的递推表达式,采用动态规划的方式求解N值
* @param N_Texture 结果返回在N_Texture中
*/
__device__ void d_basisFunction(float *nTexture, const float *knots, float u, int degree, int d_knotsCnt);
/**
* 计算并保存基函数值
* @param nTexture 记录度数为p的基函数值,规模为【sampleCnt,pointsCnt】
* @param nTexture1 记录度数为p-1的基函数值,规模为【sampleCnt+1,pointsCnt】
*/
__global__ void
g_basisTexture(float *nTexture, float *nTexture1, const float *d_knots, int d_pointsCnt, int d_knotsCnt,
int d_sampleCnt);
/**
* 计算并保存基函数对采样点切向量的分量值
* @param derTexture 记录度数为p的Nurbs基函数对采样点切向量的分量值,大小为【sampleCnt,pointsCnt】
* @param nTexture1 度数为p-1的基函数值,规模为【sampleCnt+1,pointsCnt】
*/
__global__ void
g_derTexture(float *derTexture, const float *nTexture1, const float *d_knots, int d_pointsCnt, int d_knotsCnt,
int d_sampleCnt);
#endif //NURBSEVALUATOR_NURBSCOMMON_CUH

73
include/device/NurbsCurve.cuh

@ -0,0 +1,73 @@
//
// Created by 14727 on 2022/12/9.
//
#ifndef NURBSEVALUATOR_NURBSCURVE_CUH
#define NURBSEVALUATOR_NURBSCURVE_CUH
#include <cuda_runtime.h>
#include <vector>
//#include <map>
namespace NurbsCurve {
const int POINT_SIZE = 4;
/**
* 曲线计算的核函数
* @param d_pointSize 点的大小(3: [x, y, z] | 4:[x, y, z, w])
*/
__global__ static void
g_evaluate(float *res, const float *NTexture, const float *d_points, int d_pointsCnt, int d_pointSize,
float d_lastKnot, int d_sampleCnt);
__global__ static void
g_derivative(float *derivatives, const float *derTexture, const float *nTexture, const float *d_points,
int d_pointsCnt, int d_pointSize, float d_lastKnot,
int d_sampleCnt);
__global__ static void g_curvature(const float *derivatives, int sampleCnt, float lastKnot);
class Curve {
private:
std::vector<std::vector<float>> controlPoints;
std::vector<float> knots;
float *d_knots;
float *d_points;
bool recordTime;
float *d_nTexture; // 指向度为p时的device中的nurbs基函数矩阵
float *d_nTexture1; // 指向度为p-1时的device中的nurbs基函数矩阵
float *d_derivatives{}; // 一阶导计算结果
public:
/**
* 构造函数
* @param controlPoints 控制点矩阵[pointsCnt][3]
*/
explicit Curve(std::vector<std::vector<float>> controlPoints, std::vector<float> knots);
/**
* 供外部CPU程序使用的、负责调用gpu并行进行evaluation的方法
* @param sampleCnt_ 在参数域内均匀采样的采样数,它会更新成员变量中的sampleCnt
* @return 由 map 组成的vector{<u, {x, y, z}>}
*/
std::vector<std::vector<float>> evaluate(int sampleCnt_);
/**
* 供外部CPU程序使用的、负责调用gpu并行计算切向量的方法
*/
void derivative(int sampleCnt);
/**
* 供外部CPU程序使用的、负责调用gpu并行计算二阶导的方法
*/
void curvature(int sampleCnt);
~Curve();
void setRecordTime(bool r);
};
}
#endif //NURBSEVALUATOR_NURBSCURVE_CUH

85
include/device/NurbsSurface.cuh

@ -0,0 +1,85 @@
//
// Created by 14727 on 2022/12/9.
//
#ifndef NURBSEVALUATOR_NURBSSURFACE_CUH
#define NURBSEVALUATOR_NURBSSURFACE_CUH
#include <vector>
#include "cuda_runtime.h"
namespace NurbsSurface {
const int POINT_SIZE = 4;
/**
* 曲线计算的核函数
* @param d_pointSize 点的大小(3: [x, y, z] | 4:[x, y, z, w])
*/
__global__ static void
g_evaluate(float* res, const float *d_nTexture_u, const float *d_nTexture_v, const float *d_points, int d_pointsCnt_u,
int d_pointsCnt_v, int d_pointSize, float d_lastKnot_u, float d_lastKnot_v, int d_sampleCnt_u,
int d_sampleCnt_v);
__global__ static void
g_derivative(float *derivatives, const float *derTexture_u, const float *derTexture_v, const float *nTexture_u,
const float *nTexture_v,
const float *d_points, int d_pointsCnt_u, int d_pointsCnt_v, int d_pointSize, float d_lastKnot_u,
float d_lastKnot_v, int d_sampleCnt_u, int d_sampleCnt_v);
__global__ static void
g_curvature(const float *derivatives, int sampleCnt_u, int sampleCnt_v, float lastKnot_u, float lastKnot_v);
class Surface {
private:
std::vector<std::vector<std::vector<float>>> controlPoints;
float *d_points;
std::vector<float> knots_u;
std::vector<float> knots_v;
float *d_knots_u;
float *d_knots_v;
bool recordTime;
float *d_nTexture_u; // u方向指向度为p时的device中的nurbs基函数矩阵
float *d_nTexture_v; // v方向指向度为p时的device中的nurbs基函数矩阵
float *d_nTexture1_u; // u方向指向度为p-1时的device中的nurbs基函数矩阵
float *d_nTexture1_v; // v方向指向度为p-1时的device中的nurbs基函数矩阵
float *d_derivatives; // 一阶导计算结果
public:
/**
* 构造函数
* @param controlPoints 控制点矩阵[pointsCnt_u][pointsCnt_v][3]
* @param knots_u u方向knots
* @param knots_v v方向knots
*/
__host__ explicit Surface(std::vector<std::vector<std::vector<float>>> controlPoints,
std::vector<float> knots_u, std::vector<float> knots_v);
/**
* 供外部CPU程序使用的、负责调用gpu并行计算的方法
* @param sampleCnt_u u方向采样数目
* @param sampleCnt_v v方向采样数目
* @return 由 map 组成的vector{<<u, v>, {x, y, z}>}
*/
__host__ std::vector<std::vector<std::vector<float>>>
evaluate(int sampleCnt_u_, int sampleCnt_v_);
/**
* 供外部CPU程序使用的、负责调用gpu并行计算切向量的方法
*/
__host__ void derivative(int sampleCnt_u, int sampleCnt_v);
/**
* 供外部CPU程序使用的、负责调用gpu并行计算二阶导的方法
*/
__host__ void curvature(int sampleCnt_u, int sampleCnt_v);
void setRecordTime(bool r);
~Surface();
};
}
#endif //NURBSEVALUATOR_NURBSSURFACE_CUH

22
include/utils.h

@ -0,0 +1,22 @@
#ifndef UNTITLED1_UTILS_H
#define UNTITLED1_UTILS_H
#define IN_UNIX 0 // 确定当前运行的操作系统(需要通过系统调用获得时间)
#if IN_UNIX
#include <sys/time.h>
#include <ctime>
double get_time();
#else
#include <windows.h>
double get_time();
#endif
/**
* free的时候不会出错free
*
*/
void safeCudaFree(float *&p);
void safeFree(float *&p);
#endif //UNTITLED1_UTILS_H

26
src/device/DeviceUtils.cu

@ -0,0 +1,26 @@
//
// Created by 14727 on 2022/12/9.
//
#include "../../include/device/DeviceUtils.cuh"
__device__ void d_safeFree(float *&p) {
if (p != nullptr) {
free(p);
p = nullptr;
}
}
__device__ bool d_floatEqual(float a, float b) {
return abs(a - b) < 0.00001;
}
__device__ void normalization(float &a, float &b, float &c) {
float sumA = a * a;
float sumB = b * b;
float sumC = c * c;
float sum = sumA + sumB + sumC;
a = sqrt(sumA / sum);
b = sqrt(sumB / sum);
c = sqrt(sumC / sum);
}

76
src/device/NurbsCommon.cu

@ -0,0 +1,76 @@
//
// Created by 14727 on 2022/11/19.
//
#include "../../include/device/NurbsCommon.cuh"
#include "../../include/device/DeviceUtils.cuh"
__device__ void d_basisFunction(float *N_Texture, const float *knots, float u, int degree, int d_knotsCnt) {
int m = d_knotsCnt - 1;
for (int p = 0; p <= degree; p++) {
for (int i = 0; i + p <= m - 1; i++) {
if (p == 0) {
if ((u > knots[i] || d_floatEqual(u, knots[i])) && (u < knots[i + 1])
||
d_floatEqual(u, knots[i + 1]) && d_floatEqual(u, knots[m])) {
N_Texture[p * m + i] = 1.0;
} else {
N_Texture[p * m + i] = 0.0;
}
} else {
float Nip_1 = N_Texture[(p - 1) * m + i];
float Ni1p_1 = N_Texture[(p - 1) * m + i + 1];
float left = d_floatEqual(knots[i + p], knots[i]) ? 0 : (u - knots[i]) * Nip_1 /
(knots[i + p] - knots[i]);
float right = d_floatEqual(knots[i + p + 1], knots[i + 1]) ? 0 : (knots[i + p + 1] - u) * Ni1p_1 /
(knots[i + p + 1] - knots[i + 1]);
N_Texture[p * m + i] = left + right;
}
}
}
}
__global__ void g_basisTexture(float *nTexture, float *nTexture1, const float *d_knots, int d_pointsCnt, int d_knotsCnt,
int d_sampleCnt) {
// 一维grid和一维block
int idx = blockIdx.x * blockDim.x + threadIdx.x; // 采样点编号
float d_paramCeil = d_knots[d_knotsCnt - 1];
float u = idx * d_paramCeil / (d_sampleCnt - 1);
if (u > 1.0 * d_paramCeil) {
return;
}
int d_degree = d_knotsCnt - 1 - d_pointsCnt;
auto *N_dp = (float *) malloc((d_degree + 1) * (d_knotsCnt - 1) * sizeof(float));
d_basisFunction(N_dp, d_knots, u, d_degree, d_knotsCnt);
for (int i = 0; i < d_pointsCnt; i++) {
nTexture[idx * d_pointsCnt + i] = N_dp[d_degree * (d_knotsCnt - 1) + i];
nTexture1[idx * (d_pointsCnt + 1) + i] = N_dp[(d_degree - 1) * (d_knotsCnt - 1) + i];
// printf("nTexture1: %g ", nTexture1[idx * (d_pointsCnt + 1) + i]);
}
nTexture1[idx * (d_pointsCnt + 1) + d_pointsCnt] = N_dp[(d_degree - 1) * (d_knotsCnt - 1) +
d_pointsCnt]; // nTexture1多记录一列数据
d_safeFree(N_dp);
}
__global__ void
g_derTexture(float *derTexture, const float *nTexture1, const float *d_knots, int d_pointsCnt, int d_knotsCnt,
int d_sampleCnt) {
// 一维grid和一维block
int idx = blockIdx.x * blockDim.x + threadIdx.x; // 采样点编号
if (idx >= d_sampleCnt) {
return;
}
int degree = d_knotsCnt - 1 - d_pointsCnt;
// printf("degree: %d\n", degree);
for (int i = 0; i < d_pointsCnt; i++) {
float left = d_floatEqual(d_knots[i + degree], d_knots[i]) ? 0 :
nTexture1[idx * (d_pointsCnt + 1) + i] * (degree - 1) / (d_knots[i + degree] - d_knots[i]);
float right = d_floatEqual(d_knots[i + degree + 1], d_knots[i + 1]) ? 0 :
nTexture1[idx * (d_pointsCnt + 1) + i + 1] * (degree - 1) /
(d_knots[i + degree + 1] - d_knots[i + 1]);
derTexture[idx * d_pointsCnt + i] = left - right;
// printf("<%d, %d> -- %g \n", idx, i, left - right);
// printf("nTex1: %g \n", nTexture1[idx * (d_pointsCnt + 1) + i]);
}
}

283
src/device/NurbsCurve.cu

@ -0,0 +1,283 @@
//
// Created by 14727 on 2022/12/9.
//
#include "../../include/device/NurbsCommon.cuh"
#include "../../include/device/NurbsCurve.cuh"
#include "../../include/utils.h"
__global__ void
NurbsCurve::g_evaluate(float *res, const float *NTexture, const float *d_points, const int d_pointsCnt,
const int d_POINT_SIZE, const float d_lastKnot, const int d_sampleCnt) {
// printf(" curve calculating... \n");
// 二维grid和一维的block
// int idx = (blockIdx.y * gridDim.x + blockIdx.x) * blockDim.x + threadIdx.x;
// 二维block和一维grid
int idx = blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
float u = idx * d_lastKnot / (d_sampleCnt - 1);
if (u > 1.0 * d_lastKnot) {
return;
}
//
// int d_degree = d_knotsCnt - 1 - d_pointsCnt;
// // 注意,在device中,全局内存还是以malloc和free的方式分配和回收的,而不是使用cudaMalloc和cudaFree
// auto *N_dp = (float *) malloc((d_degree + 1) * (d_knotsCnt - 1) * sizeof(float));
// d_basisFunction(N_dp, d_knots, u, d_degree, d_knotsCnt);
float x = 0., y = 0., z = 0., sumW = 0.;
for (int i = 0; i < d_pointsCnt; i++) {
float N = NTexture[idx * d_pointsCnt + i];
int baseIdx = i * d_POINT_SIZE;
float w = d_points[baseIdx + 3];
x += N * w * d_points[baseIdx];
y += N * w * d_points[baseIdx + 1];
z += N * w * d_points[baseIdx + 2];
sumW += N * w;
}
x = x / sumW;
y = y / sumW;
z = z / sumW;
int baseIdx = idx * 3; // 这里的结果点大小应该固定为3
res[baseIdx] = x;
res[baseIdx + 1] = y;
res[baseIdx + 2] = z;
printf("(%g)-->(%g, %g, %g)\n", u, x, y, z); // %g输出,舍弃无意义的0
}
__global__ void
NurbsCurve::g_derivative(float *derivatives, const float *derTexture, const float *nTexture, const float *d_points,
int d_pointsCnt, int d_POINT_SIZE,
float d_lastKnot, int d_sampleCnt) {
// 二维block和一维grid
int idx = blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
if (idx >= d_sampleCnt) return;
float u = idx * d_lastKnot / (d_sampleCnt - 1);
float nubs_dx = 0., nubs_dy = 0., nubs_dz = 0., nubs_dw = 0.;
for (int i = 0; i < d_pointsCnt; i++) {
int baseIdx = i * d_POINT_SIZE;
float nFactor = derTexture[idx * d_pointsCnt + i];
float wi = d_points[baseIdx + 3];
nubs_dx += nFactor * wi * d_points[baseIdx];
nubs_dy += nFactor * wi * d_points[baseIdx + 1];
nubs_dz += nFactor * wi * d_points[baseIdx + 2];
nubs_dw += nFactor * wi;
}
float x = 0., y = 0., z = 0., w = 0.;
for (int i = 0; i < d_pointsCnt; i++) {
float N = nTexture[idx * d_pointsCnt + i];
int baseIdx = i * d_POINT_SIZE;
float wi = d_points[baseIdx + 3];
x += N * wi * d_points[baseIdx];
y += N * wi * d_points[baseIdx + 1];
z += N * wi * d_points[baseIdx + 2];
w += N * wi;
}
float dx = (nubs_dx * w - x * nubs_dw) / (w * w);
float dy = (nubs_dy * w - y * nubs_dw) / (w * w);
float dz = (nubs_dz * w - z * nubs_dw) / (w * w);
int baseIdx = idx * 3;
derivatives[baseIdx] = dx;
derivatives[baseIdx + 1] = dy;
derivatives[baseIdx + 2] = dz;
printf("(%g)-->(%g, %g, %g)\n", u, dx, dy, dz);
}
__global__ void NurbsCurve::g_curvature(const float *derivatives, int sampleCnt, float lastKnot) {
// 二维block和一维grid
int idx = blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
if (idx >= sampleCnt) return;
float step = lastKnot / (sampleCnt - 1);
float u = idx * step;
float sndPdx, sndPdy, sndPdz; // 二阶导
int baseIdx = idx * 3, lastBaseIdx = (idx - 1) * 3, nextBaseIdx = (idx + 1) * 3;
if (idx == 0) {
sndPdx = (derivatives[nextBaseIdx] - derivatives[baseIdx]) / step;
sndPdy = (derivatives[nextBaseIdx + 1] - derivatives[baseIdx + 1]) / step;
sndPdz = (derivatives[nextBaseIdx + 2] - derivatives[baseIdx + 2]) / step;
} else if (idx == sampleCnt - 1) {
sndPdx = (derivatives[baseIdx] - derivatives[lastBaseIdx]) / step;
sndPdy = (derivatives[baseIdx + 1] - derivatives[lastBaseIdx + 1]) / step;
sndPdz = (derivatives[baseIdx + 2] - derivatives[lastBaseIdx + 2]) / step;
} else {
sndPdx = (derivatives[nextBaseIdx] - derivatives[lastBaseIdx]) / (2 * step);
sndPdy = (derivatives[nextBaseIdx + 1] - derivatives[lastBaseIdx + 1]) / (2 * step);
sndPdz = (derivatives[nextBaseIdx + 2] - derivatives[lastBaseIdx + 2]) / (2 * step);
}
printf("%g --> (%g, %g, %g)\n", u, sndPdx, sndPdy, sndPdz);
}
NurbsCurve::Curve::Curve(std::vector<std::vector<float>> controlPoints,
std::vector<float> knots) {
this->knots = std::move(knots);
this->controlPoints = std::move(controlPoints);
recordTime = false;
d_nTexture = nullptr;
d_nTexture1 = nullptr;
d_points = nullptr;
d_knots = nullptr;
d_derivatives = nullptr;
}
void NurbsCurve::Curve::setRecordTime(bool r) {
recordTime = r;
}
NurbsCurve::Curve::~Curve() {
safeCudaFree(d_nTexture);
safeCudaFree(d_nTexture1);
safeCudaFree(d_points);
safeCudaFree(d_knots);
cudaDeviceReset();
}
std::vector<std::vector<float>>
NurbsCurve::Curve::evaluate(int sampleCnt) {
if (POINT_SIZE != controlPoints[0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return {};
}
// 构造指向device的controlPoints
const int pointsCnt = controlPoints.size();
const int pointsBytes = pointsCnt * POINT_SIZE * sizeof(float);
auto *h_points = (float *) malloc(pointsBytes);
for (int i = 0; i < pointsCnt; i++) {
for (int j = 0; j < POINT_SIZE; j++) {
h_points[i * POINT_SIZE + j] = controlPoints[i][j];
}
}
safeCudaFree(d_points); // 注意内存管理
cudaMalloc((void **) &d_points, pointsBytes);
cudaMemcpy(d_points, h_points, pointsBytes, cudaMemcpyHostToDevice);
// 构造指向device的knots
const int knotsCnt = knots.size();
const int knotsBytes = knotsCnt * sizeof(float);
auto *h_knots = (float *) malloc(knotsBytes);
for (int i = 0; i < knotsCnt; i++) h_knots[i] = knots[i];
safeCudaFree(d_knots); // 注意内存管理
cudaMalloc((void **) &d_knots, knotsBytes);
cudaMemcpy(d_knots, h_knots, knotsBytes, cudaMemcpyHostToDevice);
// 分配nTexture的内存。只需要GPU内存
safeCudaFree(d_nTexture); // 注意内存管理
cudaMalloc((void **) &d_nTexture,
sampleCnt * pointsCnt * sizeof(float));
// 分配nTexture1的内存。只需要GPU内存
safeCudaFree(d_nTexture1); // 注意内存管理
cudaMalloc((void **) &d_nTexture1, sampleCnt * (pointsCnt + 1) * sizeof(float)); // 注意nTexture的大小,在算梯度时用得到i=pointsCnt + 1的基函数值
// 结果数组
size_t resBytes = sampleCnt * 3 * sizeof(float);
float *d_res;
cudaMalloc((void **)&d_res, resBytes);
auto *h_res = (float *)malloc(resBytes);
// 构造g_basisTexture线程层级
dim3 blockBasis(512);
dim3 gridBasis((sampleCnt + blockBasis.x - 1) / blockBasis.x);
// 构造线程层级
dim3 block(32, 32);
dim3 grid((sampleCnt + block.x * block.y - 1) / (block.x * block.y));
// 记录用时
double time_cost_device;
if (recordTime) time_cost_device = get_time();
printf("there..\n");
g_basisTexture <<<gridBasis, blockBasis>>>(d_nTexture, d_nTexture1, d_knots, pointsCnt, knotsCnt, sampleCnt);
// cudaMemcpy(d_nTextureCpy, d_nTexture, nTextureBytes, cudaMemcpyDeviceToDevice); // 有同步功能
cudaDeviceSynchronize();
printf("here..\n");
g_evaluate <<<grid, block>>>(d_res, d_nTexture, d_points, pointsCnt, POINT_SIZE, knots[knotsCnt - 1], sampleCnt);
// g_test<<<1,6>>>(d_nTextureCpy);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
time_cost_device = get_time() - time_cost_device;
printf("GPU time cost of curve evaluation for %d samples: %lf\n", sampleCnt, time_cost_device);
}
cudaMemcpy(h_res, d_res, resBytes, cudaMemcpyDeviceToHost);
std::vector<std::vector<float>> res(sampleCnt, std::vector<float>(3, 0.));
for(int i = 0; i < sampleCnt; i++) {
int baseIdx = i * 3;
res[i][0] = h_res[baseIdx];
res[i][1] = h_res[baseIdx + 1];
res[i][2] = h_res[baseIdx + 2];
}
safeFree(h_points);
safeFree(h_knots);
safeCudaFree(d_res);
safeFree(h_res);
return res;
}
void NurbsCurve::Curve::derivative(int sampleCnt) {
// 先完成evaluation
evaluate(sampleCnt);
if (POINT_SIZE != controlPoints[0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return;
}
float *d_derTexture = nullptr;
const int pointsCnt = controlPoints.size();
const int knotsCnt = knots.size();
cudaMalloc((void **) &d_derTexture, sampleCnt * pointsCnt * sizeof(float));
// 构造线程层级
dim3 block(32, 32);
dim3 grid((sampleCnt + block.x * block.y - 1) / (block.x * block.y));
// 构造g_basisTexture线程层级
dim3 blockTex(512);
dim3 gridTex((sampleCnt + blockTex.x - 1) / blockTex.x);
// 构造切向量计算结果
safeCudaFree(d_derivatives);
cudaMalloc((void **) &d_derivatives, sampleCnt * 3 * sizeof(float)); // 每个采用所求的切向量是一个三维向量
// 记录用时
double time_cost_device;
if (recordTime) time_cost_device = get_time();
g_derTexture<<<gridTex, blockTex>>>(d_derTexture, d_nTexture1, d_knots, pointsCnt, knotsCnt, sampleCnt);
cudaDeviceSynchronize();
g_derivative<<<grid, block>>>(d_derivatives, d_derTexture, d_nTexture, d_points, pointsCnt, POINT_SIZE,
knots[knotsCnt - 1], sampleCnt);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
time_cost_device = get_time() - time_cost_device;
printf("GPU time cost of curve first derivative calculating for %d samples: %lf\n", sampleCnt,
time_cost_device);
}
cudaFree(d_derTexture);
}
void NurbsCurve::Curve::curvature(int sampleCnt) {
// 先计算切向量
derivative(sampleCnt);
if (POINT_SIZE != controlPoints[0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return;
}
// 构造线程层级
dim3 block(32, 32);
dim3 grid((sampleCnt + block.x * block.y - 1) / (block.x * block.y));
// 记录用时
double time_cost_device;
if (recordTime) time_cost_device = get_time();
g_curvature<<<grid, block>>>(d_derivatives, sampleCnt, knots[knots.size() - 1]);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
time_cost_device = get_time() - time_cost_device;
printf("GPU time cost of curve second derivative calculating for %d samples: %lf\n", sampleCnt,
time_cost_device);
}
}

424
src/device/NurbsSurface.cu

@ -0,0 +1,424 @@
//
// Created by 14727 on 2022/12/9.
//
#include "../../include/device/NurbsSurface.cuh"
#include "../../include/device/NurbsCommon.cuh"
#include "../../include/device/DeviceUtils.cuh"
#include "../../include/utils.h"
__global__ void
NurbsSurface::g_evaluate(float* res, const float *d_nTexture_u, const float *d_nTexture_v, const float *d_points, int d_pointsCnt_u,
int d_pointsCnt_v, int d_POINT_SIZE, float d_lastKnot_u, float d_lastKnot_v, int d_sampleCnt_u,
int d_sampleCnt_v) {
// 二维grid和二维的block
int ix = blockIdx.x * blockDim.x + threadIdx.x;
int iy = blockIdx.y * blockDim.y + threadIdx.y;
float u = ix * d_lastKnot_u / (d_sampleCnt_u - 1);
float v = iy * d_lastKnot_v / (d_sampleCnt_v - 1);
if (u > 1.0 * d_lastKnot_u || v > 1.0 * d_lastKnot_v) {
return;
}
float x = 0., y = 0., z = 0., sumW = 0.;
for (int i = 0; i < d_pointsCnt_u; i++) {
float N_U = d_nTexture_u[ix * d_pointsCnt_u + i];
for (int j = 0; j < d_pointsCnt_v; j++) {
float N_V = d_nTexture_v[iy * d_pointsCnt_v + j];
int idx = (i * d_pointsCnt_v + j) * d_POINT_SIZE;
float w = d_points[idx + 3];
x += N_U * N_V * w * d_points[idx];
y += N_U * N_V * w * d_points[idx + 1];
z += N_U * N_V * w * d_points[idx + 2];
sumW += N_U * N_V * w;
}
}
x = x / sumW;
y = y / sumW;
z = z / sumW;
// int baseIdx = (ix * d_sampleCnt_v + iy) * 3;
// res[baseIdx] = x;
// res[baseIdx + 1] = y;
// res[baseIdx + 2] = z;
// printf("(%d, %d)-->(%g, %g, %g)\n", ix, iy, x, y, z); // %g输出,舍弃无意义的0
}
__global__ void
NurbsSurface::g_derivative(float *derivatives, const float *derTexture_u, const float *derTexture_v,
const float *nTexture_u, const float *nTexture_v, const float *d_points, int d_pointsCnt_u,
int d_pointsCnt_v, int d_POINT_SIZE, float d_lastKnot_u, float d_lastKnot_v,
int d_sampleCnt_u, int d_sampleCnt_v) {
// 二维grid和二维的block
int ix = blockIdx.x * blockDim.x + threadIdx.x;
int iy = blockIdx.y * blockDim.y + threadIdx.y;
if (ix >= d_sampleCnt_u || iy >= d_sampleCnt_v) {
return;
}
float u = ix * d_lastKnot_u / (d_sampleCnt_u - 1);
float v = iy * d_lastKnot_v / (d_sampleCnt_v - 1);
float nubsPdx_u = 0., nubsPdy_u = 0, nubsPdz_u = 0., nubsPdw_u = 0.;
float nubsPdx_v = 0., nubsPdy_v = 0, nubsPdz_v = 0., nubsPdw_v = 0.;
for (int i = 0; i < d_pointsCnt_u; i++) {
for (int j = 0; j < d_pointsCnt_u; j++) {
int baseIdx = (i * d_pointsCnt_v + j) * d_POINT_SIZE;
float factor_u = derTexture_u[ix * d_pointsCnt_u + i] * nTexture_v[iy * d_pointsCnt_v + j];
float factor_v = derTexture_v[iy * d_pointsCnt_v + j] * nTexture_u[ix * d_pointsCnt_u + i];
float wij = d_points[baseIdx + 3];
nubsPdx_u += factor_u * wij * d_points[baseIdx];
nubsPdy_u += factor_u * wij * d_points[baseIdx + 1];
nubsPdz_u += factor_u * wij * d_points[baseIdx + 2];
nubsPdw_u += factor_u * wij;
nubsPdx_v += factor_v * wij * d_points[baseIdx];
nubsPdy_v += factor_v * wij * d_points[baseIdx + 1];
nubsPdz_v += factor_v * wij * d_points[baseIdx + 2];
nubsPdw_v += factor_v * wij;
}
}
float x = 0., y = 0., z = 0., w = 0.;
for (int i = 0; i < d_pointsCnt_u; i++) {
float N_U = nTexture_u[ix * d_pointsCnt_u + i];
for (int j = 0; j < d_pointsCnt_v; j++) {
float N_V = nTexture_v[iy * d_pointsCnt_v + j];
int idx = (i * d_pointsCnt_v + j) * d_POINT_SIZE;
float wij = d_points[idx + 3];
x += N_U * N_V * wij * d_points[idx];
y += N_U * N_V * wij * d_points[idx + 1];
z += N_U * N_V * wij * d_points[idx + 2];
w += N_U * N_V * wij;
}
}
float w2 = w * w;
float pdx_u = (nubsPdx_u * w - x * nubsPdw_u) / w2;
float pdy_u = (nubsPdy_u * w - y * nubsPdw_u) / w2;
float pdz_u = (nubsPdz_u * w - z * nubsPdw_u) / w2;
float pdx_v = (nubsPdx_v * w - x * nubsPdw_v) / w2;
float pdy_v = (nubsPdy_v * w - y * nubsPdw_v) / w2;
float pdz_v = (nubsPdz_v * w - z * nubsPdw_v) / w2;
// float pdz_u = (nubsPdz_u * w - z )
int baseIdx = (ix * d_sampleCnt_v + iy) * 6;
derivatives[baseIdx] = pdx_u;
derivatives[baseIdx + 1] = pdy_u;
derivatives[baseIdx + 2] = pdz_u;
derivatives[baseIdx + 3] = pdx_v;
derivatives[baseIdx + 4] = pdy_v;
derivatives[baseIdx + 5] = pdz_v;
float x_n = pdy_u * pdz_v - pdy_v * pdz_u, y_n = pdx_v * pdz_u - pdx_u * pdz_v, z_n =
pdx_u * pdy_v - pdx_v * pdy_u; // 叉乘得到法向量
if ((ix == 8 && iy == 9) || (ix == 7 && iy == 9) || (ix == 9 && iy == 9) || (ix == 8 && iy == 8) ||
(ix == 8 && iy == 10))
printf("(%g,%g)-->u:(%g, %g, %g), v:(%g,%g,%g), normal:(%g,%g,%g)\n", u, v, pdx_u, pdy_u, pdz_u, pdx_v, pdy_v,
pdz_v, x_n, y_n, z_n);
}
__global__ void
NurbsSurface::g_curvature(const float *derivatives, int sampleCnt_u, int sampleCnt_v, float lastKnot_u,
float lastKnot_v) {
// 二维grid和二维的block
int ix = blockIdx.x * blockDim.x + threadIdx.x;
int iy = blockIdx.y * blockDim.y + threadIdx.y;
if (ix >= sampleCnt_u || iy >= sampleCnt_v) {
return;
}
float step_u = lastKnot_u / (sampleCnt_u - 1), step_v = lastKnot_v / (sampleCnt_v - 1);
float u = ix * step_u, v = iy * step_v;
int baseIdx = (ix * sampleCnt_v + iy) * 6;
int lastBaseIdx_u = ((ix - 1) * sampleCnt_v + iy) * 6, nextBaseIdx_u = ((ix + 1) * sampleCnt_v + iy) * 6;
int lastBaseIdx_v = (ix * sampleCnt_v + iy - 1) * 6, nextBaseIdx_v = (ix * sampleCnt_v + iy + 1) * 6;
// printf("(%g,%g)-->u:(%g, %g, %g), v:(%g,%g,%g)\n", u, v, derivatives[baseIdx], derivatives[baseIdx + 1],
// derivatives[baseIdx + 2], derivatives[baseIdx + 3], derivatives[baseIdx + 4], derivatives[baseIdx + 5]);
float sndPdx_uu, sndPdy_uu, sndPdz_uu, sndPdx_vv, sndPdy_vv, sndPdz_vv; // 二阶导
float sndPdx_uv, sndPdy_uv, sndPdz_uv, sndPdx_vu, sndPdy_vu, sndPdz_vu;
if (ix == 0) {
sndPdx_uu = (derivatives[nextBaseIdx_u] - derivatives[baseIdx]) / step_u;
sndPdy_uu = (derivatives[nextBaseIdx_u + 1] - derivatives[baseIdx + 1]) / step_u;
sndPdz_uu = (derivatives[nextBaseIdx_u + 2] - derivatives[baseIdx + 2]) / step_u;
sndPdx_vu = (derivatives[nextBaseIdx_u + 3] - derivatives[baseIdx + 3]) / step_u;
sndPdy_vu = (derivatives[nextBaseIdx_u + 4] - derivatives[baseIdx + 4]) / step_u;
sndPdz_vu = (derivatives[nextBaseIdx_u + 5] - derivatives[baseIdx + 5]) / step_u;
} else if (ix == sampleCnt_u - 1) {
sndPdx_uu = (derivatives[baseIdx] - derivatives[lastBaseIdx_u]) / step_u;
sndPdy_uu = (derivatives[baseIdx + 1] - derivatives[lastBaseIdx_u + 1]) / step_u;
sndPdz_uu = (derivatives[baseIdx + 2] - derivatives[lastBaseIdx_u + 2]) / step_u;
sndPdx_vu = (derivatives[baseIdx + 3] - derivatives[lastBaseIdx_u + 3]) / step_u;
sndPdy_vu = (derivatives[baseIdx + 4] - derivatives[lastBaseIdx_u + 4]) / step_u;
sndPdz_vu = (derivatives[baseIdx + 5] - derivatives[lastBaseIdx_u + 5]) / step_u;
} else {
sndPdx_uu = (derivatives[nextBaseIdx_u] - derivatives[lastBaseIdx_u]) / (2 * step_u);
sndPdy_uu = (derivatives[nextBaseIdx_u + 1] - derivatives[lastBaseIdx_u + 1]) / (2 * step_u);
sndPdz_uu = (derivatives[nextBaseIdx_u + 2] - derivatives[lastBaseIdx_u + 2]) / (2 * step_u);
sndPdx_vu = (derivatives[nextBaseIdx_u + 3] - derivatives[lastBaseIdx_u + 3]) / (2 * step_u);
sndPdy_vu = (derivatives[nextBaseIdx_u + 4] - derivatives[lastBaseIdx_u + 4]) / (2 * step_u);
sndPdz_vu = (derivatives[nextBaseIdx_u + 5] - derivatives[lastBaseIdx_u + 5]) / (2 * step_u);
}
if (iy == 0) {
sndPdx_vv = (derivatives[nextBaseIdx_v + 3] - derivatives[baseIdx + 3]) / step_v;
sndPdy_vv = (derivatives[nextBaseIdx_v + 4] - derivatives[baseIdx + 4]) / step_v;
sndPdz_vv = (derivatives[nextBaseIdx_v + 5] - derivatives[baseIdx + 5]) / step_v;
sndPdx_uv = (derivatives[nextBaseIdx_v] - derivatives[baseIdx]) / step_v;
sndPdy_uv = (derivatives[nextBaseIdx_v + 1] - derivatives[baseIdx + 1]) / step_v;
sndPdz_uv = (derivatives[nextBaseIdx_v + 2] - derivatives[baseIdx + 2]) / step_v;
} else if (iy == sampleCnt_v - 1) {
sndPdx_vv = (derivatives[baseIdx + 3] - derivatives[lastBaseIdx_v + 3]) / step_v;
sndPdy_vv = (derivatives[baseIdx + 4] - derivatives[lastBaseIdx_v + 4]) / step_v;
sndPdz_vv = (derivatives[baseIdx + 5] - derivatives[lastBaseIdx_v + 5]) / step_v;
sndPdx_uv = (derivatives[baseIdx] - derivatives[lastBaseIdx_v]) / step_v;
sndPdy_uv = (derivatives[baseIdx + 1] - derivatives[lastBaseIdx_v + 1]) / step_v;
sndPdz_uv = (derivatives[baseIdx + 2] - derivatives[lastBaseIdx_v + 2]) / step_v;
} else {
sndPdx_vv = (derivatives[nextBaseIdx_v + 3] - derivatives[lastBaseIdx_v + 3]) / (2 * step_v);
sndPdy_vv = (derivatives[nextBaseIdx_v + 4] - derivatives[lastBaseIdx_v + 4]) / (2 * step_v);
sndPdz_vv = (derivatives[nextBaseIdx_v + 5] - derivatives[lastBaseIdx_v + 5]) / (2 * step_v);
sndPdx_uv = (derivatives[nextBaseIdx_v] - derivatives[lastBaseIdx_v]) / (2 * step_v);
sndPdy_uv = (derivatives[nextBaseIdx_v + 1] - derivatives[lastBaseIdx_v + 1]) / (2 * step_v);
sndPdz_uv = (derivatives[nextBaseIdx_v + 2] - derivatives[lastBaseIdx_v + 2]) / (2 * step_v);
}
float uvx = (sndPdx_uv + sndPdx_vu) / 2, uvy = (sndPdy_uv + sndPdy_vu) / 2, uvz = (sndPdz_uv + sndPdz_vu) / 2;
normalization(sndPdx_uu, sndPdy_uu, sndPdz_uu);
normalization(uvx, uvy, uvz);
normalization(sndPdx_vv, sndPdy_vv, sndPdz_vv);
if (ix == 8 && iy == 9)
printf("(%g, %g) --> uu: (%g, %g, %g), uv: (%g, %g, %g), vv: (%g, %g, %g)\n", u, v, sndPdx_uu, sndPdy_uu,
sndPdz_uu,
uvx, uvy, uvz, sndPdx_vv, sndPdy_vv, sndPdz_vv);
}
__host__ NurbsSurface::Surface::Surface(std::vector<std::vector<std::vector<float>>> controlPoints,
std::vector<float> knots_u, std::vector<float> knots_v) {
this->knots_u = std::move(knots_u);
this->knots_v = std::move(knots_v);
this->controlPoints = std::move(controlPoints);
recordTime = false;
d_nTexture_u = nullptr;
d_nTexture_v = nullptr;
d_nTexture1_u = nullptr;
d_nTexture1_v = nullptr;
d_knots_u = nullptr;
d_knots_v = nullptr;
d_points = nullptr;
d_derivatives = nullptr;
}
__host__ std::vector<std::vector<std::vector<float>>>
NurbsSurface::Surface::evaluate(int sampleCnt_u, int sampleCnt_v) {
if (POINT_SIZE != controlPoints[0][0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return {};
}
// 构造指向device的controlPoints
const int pointsCnt_u = controlPoints.size(), pointsCnt_v = controlPoints[0].size();
const int pointsBytes = pointsCnt_u * pointsCnt_v * POINT_SIZE * sizeof(float);
auto *h_points = (float *) malloc(pointsBytes);
for (int i = 0; i < pointsCnt_u; i++) {
for (int j = 0; j < pointsCnt_v; j++) {
for (int k = 0; k < POINT_SIZE; k++) {
h_points[(i * pointsCnt_v + j) * POINT_SIZE + k] = controlPoints[i][j][k];
}
}
}
cudaMalloc((void **) &d_points, pointsBytes);
cudaMemcpy(d_points, h_points, pointsBytes, cudaMemcpyHostToDevice);
// 构造指向device的knots
const int knotsCnt_u = knots_u.size(), knotsCnt_v = knots_v.size();
const int knotsBytes_u = knotsCnt_u * sizeof(float), knotsBytes_v = knotsCnt_v * sizeof(float);
auto *h_knots_u = (float *) malloc(knotsBytes_u), *h_knots_v = (float *) malloc(knotsBytes_v);
for (int i = 0; i < knotsCnt_u; i++) h_knots_u[i] = knots_u[i];
for (int i = 0; i < knotsCnt_v; i++) h_knots_v[i] = knots_v[i];
cudaMalloc((void **) &d_knots_u, knotsBytes_u);
cudaMalloc((void **) &d_knots_v, knotsBytes_v);
cudaMemcpy(d_knots_u, h_knots_u, knotsBytes_u, cudaMemcpyHostToDevice);
cudaMemcpy(d_knots_v, h_knots_v, knotsBytes_v, cudaMemcpyHostToDevice);
// 构造nTexture
cudaMalloc((void **) &d_nTexture_u,
sampleCnt_u * pointsCnt_u * sizeof(float)); // 注意nTexture的大小,在算梯度时用得到i=pointsCnt + 1的基函数值
cudaMalloc((void **) &d_nTexture_v, sampleCnt_v * pointsCnt_v * sizeof(float));
// 构造nTexture1
cudaMalloc((void **) &d_nTexture1_u, sampleCnt_u * (pointsCnt_u + 1) * sizeof(float));
cudaMalloc((void **) &d_nTexture1_v, sampleCnt_v * (pointsCnt_v + 1) * sizeof(float));
// 结果数组
size_t resBytes = sampleCnt_u * sampleCnt_v * 3 * sizeof(float);
float *d_res;
cudaMalloc((void **)&d_res, resBytes);
auto *h_res = (float *)malloc(resBytes);
// 构造g_basisTexture线程层级
dim3 blockBasis(512);
dim3 gridBasis_u((sampleCnt_u + blockBasis.x - 1) / blockBasis.x);
dim3 gridBasis_v((sampleCnt_v + blockBasis.x - 1) / blockBasis.x);
// 构造线程层级,调用核函数
dim3 block(32, 32);
dim3 grid((sampleCnt_u + block.x - 1) / block.x, (sampleCnt_v + block.y - 1) / block.y);
// 记录用时
double time_cost_device;
g_basisTexture<<<gridBasis_u, blockBasis>>>(d_nTexture_u, d_nTexture1_u, d_knots_u, pointsCnt_u, knotsCnt_u,
sampleCnt_u);
cudaDeviceSynchronize();
g_basisTexture<<<gridBasis_v, blockBasis>>>(d_nTexture_v, d_nTexture1_v, d_knots_v, pointsCnt_v, knotsCnt_v,
sampleCnt_v);
cudaDeviceSynchronize();
if (recordTime) time_cost_device = get_time();
g_evaluate <<<grid, block>>>(d_res, d_nTexture_u, d_nTexture_v, d_points, pointsCnt_u, pointsCnt_v, POINT_SIZE,
knots_u[knotsCnt_u - 1], knots_v[knotsCnt_v - 1], sampleCnt_u, sampleCnt_v);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
time_cost_device = get_time() - time_cost_device;
printf("GPU time cost of surface evaluation for %d samples: %lf\n", sampleCnt_u * sampleCnt_v,
time_cost_device);
}
cudaMemcpy(h_res, d_res, resBytes, cudaMemcpyDeviceToHost);
std::vector<std::vector<std::vector<float>>> res(sampleCnt_u, std::vector<std::vector<float>>(sampleCnt_v, std::vector<float>(3, 0.)));
for(int i = 0; i < sampleCnt_u; i++) {
int baseIdx = i * sampleCnt_v * 3;
for(int j = 0; j < sampleCnt_v; j++) {
baseIdx += j * 3;
res[i][j][0] = h_res[baseIdx];
res[i][j][1] = h_res[baseIdx + 1];
res[i][j][2] = h_res[baseIdx + 2];
// printf("%d, %d: %f, %f, %f\n", i, j, res[i][j][0], res[i][j][1], res[i][j][2]);
}
}
// 释放内存
safeFree(h_points);
safeFree(h_knots_u);
safeFree(h_knots_v);
safeCudaFree(d_res);
safeFree(h_res);
return res;
}
__host__ void NurbsSurface::Surface::derivative(int sampleCnt_u, int sampleCnt_v) {
// 先完成evaluation
evaluate(sampleCnt_u, sampleCnt_v);
if (POINT_SIZE != controlPoints[0][0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return;
}
float *d_derTexture_u = nullptr;
float *d_derTexture_v = nullptr;
const int pointsCnt_u = controlPoints.size(), pointsCnt_v = controlPoints[0].size();
const int knotsCnt_u = knots_u.size(), knotsCnt_v = knots_v.size();
cudaMalloc((void **) &d_derTexture_u, sampleCnt_u * pointsCnt_u * sizeof(float));
cudaMalloc((void **) &d_derTexture_v, sampleCnt_v * pointsCnt_v * sizeof(float));
// 构造切向量计算结果
safeCudaFree(d_derivatives);
cudaMalloc((void **) &d_derivatives,
sampleCnt_v * sampleCnt_u * 6 * sizeof(float)); // 每个采用所求的切向量是一个六元向量,前三位是对u的偏导、后三位是对v的偏导
// 构造线程层级
dim3 block(32, 32);
dim3 grid((sampleCnt_u + block.x - 1) / block.x, (sampleCnt_v + block.y - 1) / block.y);
// 构造g_basisTexture线程层级
dim3 blockTex(512);
dim3 gridTex_u((sampleCnt_u + blockTex.x - 1) / blockTex.x);
dim3 gridTex_v((sampleCnt_v + blockTex.x - 1) / blockTex.x);
// 记录用时
double time_cost_device;
if (recordTime) time_cost_device = get_time();
g_derTexture<<<gridTex_u, blockTex>>>(d_derTexture_u, d_nTexture1_u, d_knots_u, pointsCnt_u, knotsCnt_u,
sampleCnt_u);
g_derTexture<<<gridTex_v, blockTex>>>(d_derTexture_v, d_nTexture1_v, d_knots_v, pointsCnt_v, knotsCnt_v,
sampleCnt_v);
cudaDeviceSynchronize();
g_derivative<<<grid, block>>>(d_derivatives, d_derTexture_u, d_derTexture_v, d_nTexture_u, d_nTexture_v, d_points,
pointsCnt_u,
pointsCnt_v, POINT_SIZE, knots_u[knotsCnt_u - 1], knots_v[knotsCnt_v - 1],
sampleCnt_u,
sampleCnt_v);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
time_cost_device = get_time() - time_cost_device;
printf("GPU time cost of surface first derivative calculating for %d samples: %lf\n", sampleCnt_u * sampleCnt_v,
time_cost_device);
}
cudaFree(d_derTexture_u);
cudaFree(d_derTexture_v);
}
__host__ void NurbsSurface::Surface::curvature(int sampleCnt_u, int sampleCnt_v) {
// 先计算切向量
derivative(sampleCnt_u, sampleCnt_v);
if (POINT_SIZE != controlPoints[0][0].size()) {
printf("Error! Nurbs控制点应表示为长度为4的齐次坐标\n");
return;
}
// 构造线程层级
dim3 block(32, 32);
dim3 grid((sampleCnt_u + block.x - 1) / block.x, (sampleCnt_v + block.y - 1) / block.y);
// 记录用时
double time_cost_device;
if (recordTime) time_cost_device = get_time();
g_curvature<<<grid, block>>>(d_derivatives, sampleCnt_u, sampleCnt_v, knots_u[knots_u.size() - 1],
knots_v[knots_v.size() - 1]);
cudaDeviceSynchronize(); // 所用线程结束后再获取结束时间。cudaThreadSynchronize()在CUDA1.0后被弃用
if (recordTime) {
time_cost_device = get_time() - time_cost_device;
printf("GPU time cost of surface second derivative calculating for %d samples: %lf\n",
sampleCnt_u * sampleCnt_v,
time_cost_device);
}
}
void NurbsSurface::Surface::setRecordTime(bool r) {
recordTime = r;
}
NurbsSurface::Surface::~Surface() {
safeCudaFree(d_nTexture_u);
safeCudaFree(d_nTexture_v);
safeCudaFree(d_nTexture1_u);
safeCudaFree(d_nTexture1_v);
safeCudaFree(d_points);
safeCudaFree(d_knots_u);
safeCudaFree(d_knots_v);
cudaDeviceReset();
}

19
main.cpp → src/main.cpp

@ -1,8 +1,9 @@
#include <cstdio>
#include "NurbsEvaluator.cuh"
#include "../include/device/NurbsCurve.cuh"
#include "../include/device/NurbsSurface.cuh"
int main() {
NurbsSurface::Evaluator nurbsSurfaceEvaluator({
NurbsSurface::Surface nurbsSurfaceEvaluator({
{{-1, 0, 0, 0.3}, {0, 1, 6, 0.8}, {1, 0, 4, 0.5}, {2, 0.5, 3, 0.8}, {3, 3, 1, 0.6}, {4, -5, 0, 0.7}},
{{-2, 1, 1.2, 0.2}, {1, 2, 3, 0.3}, {2, 2, 3, 0.6}, {-1, -0.3, 2, 0.4}, {-1, 2, 0, 0.9}, {7, -8, 2, 0.3}},
{{-3.4, 2, 3, 0.8}, {2, 3, 0, 0.6}, {4, 3, 7, 0.3}, {-2, 0, -0.2, 0.4}, {1, 1.7, 5, 0.6}, {9, -10.3, 6, 0.7}},
@ -21,11 +22,12 @@ int main() {
// {0, 0, 0, 0.1, 0.5, 0.8, 1, 1, 1},
// {0, 0, 0, 0.2, 0.7, 0.8, 1, 1, 1});
nurbsSurfaceEvaluator.setRecordTime(true);
nurbsSurfaceEvaluator.curvature(10001, 10001);
nurbsSurfaceEvaluator.curvature(101, 101);
// nurbsSurfaceEvaluator.evaluate(101, 101);
printf("==============================\n");
NurbsCurve::Evaluator nurbsCurveEvaluator(
NurbsCurve::Curve nurbsCurveEvaluator(
{{-1, 0, 0, 0.3},
{0, 1, 6, 0.4},
{1, 0, 4, 0.5},
@ -34,10 +36,13 @@ int main() {
{4, -5, 0, 0.7}},
{0, 0, 0, 0.1, 0.5, 0.8, 1, 1, 1});
nurbsCurveEvaluator.setRecordTime(true);
nurbsCurveEvaluator.curvature(11);
// nurbsCurveEvaluator.curvature(11);
auto res = nurbsCurveEvaluator.evaluate(11);
for(auto & re : res) {
printf("%f, %f, %f\n", re[0], re[1], re[2]);
}
printf("\n");
// nurbsCurveEvaluator.derivative();
return 0;
}
}

46
src/utils.cpp

@ -0,0 +1,46 @@
#include "../include/utils.h"
#include "cuda_runtime.h"
#if IN_UNIX
double get_time() {
struct timeval tv{};
double t;
gettimeofday(&tv, (struct timezone *) nullptr);
t = tv.tv_sec + (double) tv.tv_usec * 1e-6;
return t;
}
#else
double get_time() {
LARGE_INTEGER timer;
static LARGE_INTEGER fre;
static int init = 0;
double t;
if (init != 1) {
QueryPerformanceFrequency(&fre);
init = 1;
}
QueryPerformanceCounter(&timer);
t = timer.QuadPart * 1. / fre.QuadPart;
return t;
}
#endif
void safeCudaFree(float *&p) {
if (p != nullptr) {
cudaFree(p);
p = nullptr;
}
}
void safeFree(float *&p) {
if (p != nullptr) {
free(p);
p = nullptr;
}
}

19
utils.cpp

@ -1,19 +0,0 @@
#include "utils.h"
double utils::get_time_windows() {
LARGE_INTEGER timer;
static LARGE_INTEGER fre;
static int init = 0;
double t;
if (init != 1) {
QueryPerformanceFrequency(&fre);
init = 1;
}
QueryPerformanceCounter(&timer);
t = timer.QuadPart * 1. / fre.QuadPart;
return t;
}

11
utils.h

@ -1,11 +0,0 @@
#ifndef UNTITLED1_UTILS_H
#define UNTITLED1_UTILS_H
#include <windows.h>
namespace utils {
double get_time_windows();
}
#endif //UNTITLED1_UTILS_H
Loading…
Cancel
Save