You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

442 lines
17 KiB

#include <array>
#include <bitset>
#include <cassert>
#include <iostream>
#include <booluarray.hpp>
#include <cstddef>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <vector>
#include "bernstein.hpp"
#include "multiloop.hpp"
#include "quadrature_multipoly.hpp"
#include "binomial.hpp"
#include "real.hpp"
#include "sparkstack.hpp"
#include "uvector.hpp"
#include "vector"
#include "xarray.hpp"
#include <chrono>
#include <cmath>
#include <memory>
#include "organizer/primitive.hpp"
namespace algoim::Organizer
{
namespace detail
{
void bernstein2PowerTensor(const tensor3& phiBernstein, tensor3& phiPower) {}
} // namespace detail
bool keepQuadraturePoint(std::vector<tensor3>& originTensors, const uvector3& originPt)
{
// TODO: using blobtree to filter tensors
for (auto& t : originTensors) {
if (evalPower(t, originPt) >= 0) { return false; }
}
return true;
}
// std::vector<std::shared_ptr<PrimitiveDesc>> primitives;
// BasicTask(std::vector<std::shared_ptr<PrimitiveDesc>> ps) {};
void restrictToInnerFace(const tensor3& phi, int k, real facePos, tensor2& res)
{
assert(0 <= k && k < 3);
assert(all(res.ext() == remove_component(phi.ext(), k)));
assert(0 < facePos && facePos < 1);
real* basisAlongK;
int P = phi.ext(k);
algoim_spark_alloc(real, &basisAlongK, P);
bernstein::evalBernsteinBasis(facePos, P, basisAlongK);
for (auto i = res.loop(); ~i; ++i) {
real evalAlongKAtFacePos = 0;
for (int j = 0; j < P; ++j) { evalAlongKAtFacePos += basisAlongK[j] * phi.m(add_component(i(), k, j)); }
res.l(i) = evalAlongKAtFacePos;
}
}
void basicTask(const std::shared_ptr<PrimitiveDesc>& p, int q = 20, real xmin = -1, real xmax = 1)
{
real volume = 0;
auto integrand = [](const uvector<real, 3>& x) { return 1.0; };
uvector3 range = xmax - xmin;
if (auto pt = std::dynamic_pointer_cast<SphereDesc>(p)) {
tensor3 tensor(nullptr, 3);
algoim_spark_alloc(real, tensor);
makeSphere(*pt, tensor);
detail::powerTransformation(range, xmin, tensor);
tensor3 phi(nullptr, 3);
algoim_spark_alloc(real, phi);
detail::power2BernsteinTensor(tensor, phi);
uvector<real, 3> testX(0., 0., 0.25);
real testEvalBernstein = bernstein::evalBernsteinPoly(phi, testX);
// auto vec1 = xarray2StdVector(phi);
std::cout << "eval bernstein without interpolation:" << testEvalBernstein << std::endl;
ImplicitPolyQuadrature<3> ipquad(phi);
ipquad.integrate(AutoMixed, q, [&](const uvector<real, 3>& x, real w) {
if (isInsideBernstein(phi, x)) volume += w * integrand(xmin + x * (xmax - xmin));
});
} else if (auto pt = std::dynamic_pointer_cast<MeshDesc>(p)) {
const int faceCount = pt->indexInclusiveScan.size();
assert(faceCount > 1);
std::vector<tensor3> planeTensors(faceCount, tensor3(nullptr, 2));
algoim_spark_alloc(real, planeTensors);
tensor3 compositeTensor(nullptr, 1 + faceCount);
algoim_spark_alloc(real, compositeTensor);
makeMesh(*pt, compositeTensor, planeTensors);
detail::powerTransformation(range, xmin, compositeTensor);
auto planeStdVector1 = xarray2StdVector(planeTensors[0]);
auto planeStdVector2 = xarray2StdVector(planeTensors[1]);
auto compositeTensorStdVector = xarray2StdVector(compositeTensor);
uvector<real, 3> testX(0., 0.75, 0.2);
real textEvalPower = evalPower(compositeTensor, testX);
tensor3 phi(nullptr, 1 + faceCount);
algoim_spark_alloc(real, phi);
detail::power2BernsteinTensor(compositeTensor, phi);
int quadraturePointCount = 0;
ImplicitPolyQuadrature<3> ipquad(phi);
real testEvalBernstein = bernstein::evalBernsteinPoly(phi, testX);
ipquad.integrate(AutoMixed, q, [&](const uvector<real, 3>& x, real w) {
quadraturePointCount++;
auto realX = x * range + xmin;
if (isInsidePowers(planeTensors, realX)) volume += w * integrand(realX);
});
std::cout << "textEvalPower: " << textEvalPower << std::endl;
std::cout << "quadraturePointCount: " << quadraturePointCount << std::endl;
}
volume *= pow(xmax - xmin, 3);
std::cout << "Volume xxx: " << volume << std::endl;
};
void basicTask(const std::vector<std::shared_ptr<PrimitiveDesc>>& primitives, int q = 20, real xmin = -1, real xmax = 1)
{
std::vector<SparkStack<real>*> phiStacks;
std::vector<tensor3> phis;
std::vector<SparkStack<real>*> originTensorStacks;
std::vector<tensor3> originTensors;
real volume;
auto integrand = [](const uvector<real, 3>& x) { return 1.0; };
uvector3 range = xmax - xmin;
uvector<real, 3> testX(0., 0.75, 0.2);
for (int i = 0; i < primitives.size(); i++) {
if (auto pt = std::dynamic_pointer_cast<SphereDesc>(primitives[i])) {
tensor3 originTensor(nullptr, 3), transformedTensor(nullptr, 3);
originTensorStacks.emplace_back(algoim_spark_alloc_heap(real, originTensor)); // 记录,用以最后bool
tensor3 phi(nullptr, 3);
phiStacks.emplace_back(
algoim_spark_alloc_heap(real, phi)); // 必须先于algoim_spark_alloc,使transformedTensor的内存以栈形式释放
algoim_spark_alloc(real, transformedTensor);
makeSphere(*pt, originTensor);
originTensors.emplace_back(originTensor);
detail::powerTransformation(range, xmin, originTensor, transformedTensor);
detail::power2BernsteinTensor(transformedTensor, phi);
phis.emplace_back(phi);
} else if (auto pt = std::dynamic_pointer_cast<MeshDesc>(primitives[i])) {
const int faceCount = pt->indexInclusiveScan.size();
assert(faceCount > 1);
std::vector<tensor3> planeTensors(faceCount, tensor3(nullptr, 2));
algoimSparkAllocHeapVector(originTensorStacks, planeTensors);
tensor3 phi(nullptr, 1 + faceCount);
phiStacks.emplace_back(
algoim_spark_alloc_heap(real, phi)); // 必须先于algoim_spark_alloc,使compositeTensor的内存以栈形式释放
tensor3 compositeTensor(nullptr, 1 + faceCount);
algoim_spark_alloc(real, compositeTensor);
makeMesh(*pt, compositeTensor, planeTensors);
detail::powerTransformation(range, xmin, compositeTensor);
real testEvalPower = evalPower(compositeTensor, testX);
originTensors.insert(originTensors.end(), planeTensors.begin(), planeTensors.end());
detail::power2BernsteinTensor(compositeTensor, phi);
real testEvalBernstein = bernstein::evalBernsteinPoly(phi, testX);
phis.emplace_back(phi);
}
}
real testEvalBernstein = bernstein::evalBernsteinPoly(phis[0], testX);
ImplicitPolyQuadrature<3> ipquad(phis);
ipquad.integrate(AutoMixed, q, [&](const uvector<real, 3>& x, real w) {
auto realX = x * range + xmin;
if (keepQuadraturePoint(originTensors, realX)) volume += w * integrand(realX);
});
volume *= pow(xmax - xmin, 3);
std::cout << "Volume xxx: " << volume << std::endl;
// free memory, thus deallocate memory of xarray
for (auto& p : phiStacks) delete p;
for (auto& p : originTensorStacks) delete p;
};
void quadratureTask(const Scene& scene) {}
void buildOctree(const Scene& scene, std::vector<Node>& nodes, const uvector3& min, const uvector3& max) {}
template <int N>
int numOfZero(const uvector<int, N>& v)
{
int res = 0;
for (int i = 0; i < N; ++i) {
if (v(i) == 0) { res++; }
}
return res;
}
template <int N>
int binaryToDecimal(const uvector<int, N>& v, int zeroRep = 0)
{
int res = 0;
int base = 1;
for (int i = N - 1; i >= 0; --i) {
if (v(i) != zeroRep) { res += base; }
base *= 2;
}
return res;
}
template <int N>
int replaceFirst(uvector<int, N>& v, int oldVal, int newVal, int startIdx = 0)
{
for (int i = startIdx; i < N; ++i) {
if (v(i) == oldVal) {
v(i) = newVal;
return i;
}
}
return -1;
}
template <int N>
int findFirst(const uvector<int, N>& v, int val, int startIdx = 0)
{
for (int i = startIdx; i < N; ++i) {
if (v(i) == val) return i;
}
return -1;
}
std::pair<uvector<int, 3>, uvector<int, 3>> getOneEightCellAABB(const uvector3& min,
const uvector3& max,
const uvector<int, 3> side,
int negativeRep = -1)
{
std::pair<uvector<int, 3>, uvector<int, 3>> res = {min, max};
uvector3 mid = (min + max) / 2;
for (int i = 0; i < 3; ++i) {
if (side(i) == negativeRep) {
res.second(i) = mid(i);
} else {
res.first(i) = mid(i);
}
}
return res;
}
std::array<int, 2> sides = {-1, 1};
// 对于mark含2个及以上0的情况,尝试对每个0填1或-1的所有组合
// TODO: 参数太多了,考虑换用std::function + lambda
void visitSubcellOnBothSidesOfDir(const uvector3& nodeMid,
,
const int polyIntersectIndex,
const tensor3& poly,
std::array<Node, CHILD_NUM>& subNodes,
int startIdxToCheck,
uvector<int, 3>& mark)
{
int zeroIdx = findFirst(mark, 0, startIdxToCheck);
if (zeroIdx == -1) {
tensor3 halfCellPoly(nullptr, poly.ext());
algoim_spark_alloc(real, halfCellPoly);
int subIdx = binaryToDecimal(mark);
auto& subNode = subNodes[subIdx];
bernstein::deCasteljau(poly, subNode.min, subNode.max, halfCellPoly); // 求1/8空间下的表达
if (bernstein::uniformSign(halfCellPoly) != 1) { subNode.polyIntersectIndices.emplace_back(polyIntersectIndex); }
} else {
for (auto side : sides) {
mark(zeroIdx) = side;
visitSubcellOnBothSidesOfDir(nodeMid, polyIntersectIndex, poly, subNodes, zeroIdx + 1, mark);
}
mark(zeroIdx) = 0;
}
}
// 叶节点单独存在leaves中,是因为最后只需要叶节点信息,没有自顶向下/自底向上遍历
// 所以树结构是不需要的记录的
// void build(const Scene& scene, std::vector<Node>& intermediateNodes, std::vector<Node> leaves, int nowNodeIdx)
void build(const Scene& scene, const Node& node, std::vector<Node> leaves)
{
const std::vector<int>& polyIntersectIndices = node.polyIntersectIndices;
if (polyIntersectIndices.size() <= 4) {
leaves.emplace_back(node);
return;
}
const uvector3& nowNodeMin = node.min;
const uvector3& nowNodeMax = node.max;
std::array<Node, CHILD_NUM> subNodes;
// intermediateNodes.resize(lastIdx + 8);
int subIdx = 0;
for (MultiLoop<3> j(0, 2); ~j; ++j, ++subIdx) {
auto nodeAABB = getOneEightCellAABB(node.min, node.max, j(), 0);
subNodes[subIdx].min = nodeAABB.first;
subNodes[subIdx].max = nodeAABB.second;
}
uvector3 nodeMid = (nowNodeMin + nowNodeMax) / 2;
for (int i = 0; i < polyIntersectIndices.size(); ++i) {
const int polyIntersectIndex = polyIntersectIndices[i];
const auto& poly = scene.polys[polyIntersectIndex];
uvector<int, 3> mark(0, 0, 0);
for (int faceAxis = 0; faceAxis < 3; ++faceAxis) {
real centerPlane = nodeMid(faceAxis);
tensor2 restrictToCenterPlane(nullptr, remove_component(poly.ext(), faceAxis));
algoim_spark_alloc(real, restrictToCenterPlane);
restrictToInnerFace(poly, faceAxis, centerPlane, restrictToCenterPlane);
int signOnHalfPlane = bernstein::uniformSign(restrictToCenterPlane);
if (signOnHalfPlane == -1) {
// primitive contain the centerface
mark(faceAxis) = 2;
} else if (signOnHalfPlane == 1) {
// primitive intersects either side or both sides of the centerface
// deCasteljau to transformation
uvector3 halfCellMin = nowNodeMin, halfCellMax = nowNodeMax;
halfCellMax(faceAxis) = nodeMid(faceAxis);
tensor3 halfCellPoly(nullptr, poly.ext());
algoim_spark_alloc(real, halfCellPoly);
bernstein::deCasteljau(poly, halfCellMin, halfCellMax, halfCellPoly);
if (bernstein::uniformSign(halfCellPoly) != 1) {
// 负空间有
mark(faceAxis) = -1;
}
halfCellMax(faceAxis) = nowNodeMax(faceAxis);
halfCellMin(faceAxis) = nodeMid(faceAxis);
bernstein::deCasteljau(poly, halfCellMin, halfCellMax, halfCellPoly);
if (bernstein::uniformSign(halfCellPoly) != 1) {
// 正空间有
mark(faceAxis) += 1; // 当正负空间都有,记0
}
}
}
if (any(mark == uvector3(2, 2, 2))) {
if (all(mark == uvector3(2, 2, 2))) {
// fully containing cases
for (int i = 0; i < CHILD_NUM; ++i) {
tensor3 subPoly(nullptr, poly.ext());
bernstein::deCasteljau(poly, subNodes[i].min, subNodes[i].max, subPoly);
if (bernstein::uniformSign(subPoly) == -1) {
subNodes[i].polyFullyContainedIndices.emplace_back(polyIntersectIndex);
} else {
subNodes[i].polyIntersectIndices.emplace_back(polyIntersectIndex);
}
}
continue;
}
for (int subIdx = 0; subIdx < CHILD_NUM; ++subIdx) {
// intermediateNodes[lastIdx + subIdx].polyIntersectIndices.emplace_back(poly);
// intermediateNodes[lastIdx + subIdx].min = nowNodeMin;
// intermediateNodes[lastIdx + subIdx].max = nowNodeMax;
subNodes[subIdx].polyIntersectIndices.emplace_back(polyIntersectIndex);
}
continue;
}
int zeroCount = numOfZero<3>(mark);
if (zeroCount == 0) {
// mark has -1 or 1 only
real nodeMidVal = bernstein::evalBernsteinPoly(poly, nodeMid);
if (mark(0) == 2 && mark(1) == 1 && mark(2) == 1) {}
subNodes[binaryToDecimal(mark, -1)].polyIntersectIndices.emplace_back(polyIntersectIndex);
} else if (zeroCount == 1) {
// poly related to 2 subcells
uvector<int, 3> sideMark = mark;
int zeroIdx = replaceFirst(sideMark, 0, 1);
subNodes[binaryToDecimal(sideMark, -1)].polyIntersectIndices.emplace_back(polyIntersectIndex);
sideMark(zeroIdx) = -1;
subNodes[binaryToDecimal(sideMark, -1)].polyIntersectIndices.emplace_back(polyIntersectIndex);
} else {
// zeroCount == 2 or 3
visitSubcellOnBothSidesOfDir(nodeMid, polyIntersectIndex, poly, subNodes, 0, mark);
}
}
// launch subdivision in subcells
for (subIdx = 0; subIdx < CHILD_NUM; ++subIdx) {
subNodes[subIdx].polyFullyContainedIndices.resize(subNodes[subIdx].polyFullyContainedIndices.size()
+ node.polyFullyContainedIndices.size());
subNodes[subIdx].polyFullyContainedIndices.insert(subNodes[subIdx].polyFullyContainedIndices.end(),
node.polyFullyContainedIndices.begin(),
node.polyFullyContainedIndices.end());
build(scene, subNodes[subIdx], leaves);
}
// TODO: 考虑fully contain 问题
}
}; // namespace algoim::Organizer
// clang-format off
/**
最一开始的cell应当包含所有的primitive
func(given cell) {
得到8个subcell
for each primitive {
mark = [0,0,0]
for k in 0,1,2 {
测试primitive和k轴向的centerface有无交
if 无交 {
if primitive包裹centerface {
mark[k] = 2
} else {
判断primitive位于哪一侧
if k正方向 mark[k] = 1
else mark[k] = -1
}
}
}
if mark 含2 {
// TODO: 可能需要优化:在极端情况下,
// 例如primitive的边刚好与centerface重合,
// 此时不是所有subcell都关联primitive
将primitive放入所有subcell
} elif mark 没有0 {
将primitive放入对应的subcell
} elif mark 有1个0 {
将primitive放入两个对应的subcell
} else { // >= 2个0
测试每个可能有交subcell是否与primitive相交
相交的放入对于subcell
}
}
for each subcell {
func(subcell)
}
}
*/
// clang-format on