You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

445 lines
13 KiB

#pragma once
#include <cassert>
#include <cstddef>
#include <vector>
#include "iostream"
#include "multiloop.hpp"
#include "polyset.hpp"
#include "sparkstack.hpp"
#include "uvector.hpp"
#include "real.hpp"
#include "xarray.hpp"
#include "binomial.hpp"
#include "bernstein.hpp"
namespace algoim::Organizer
{
namespace detail
{
void compositePower(const std::vector<xarray<real, 3>>& powers,
int powerIdx,
uvector<int, 3> powerSum,
real factor,
xarray<real, 3>& res)
{
if (powerIdx == 0) {
{
uvector3 ext(1, 1, 1);
for (auto& t : powers) { ext += t.ext() - 1; }
assert(all(ext == res.ext()));
}
xarrayInit(res);
}
if (powerIdx == powers.size()) {
res.m(powerSum) += factor;
return;
}
auto& power = powers[powerIdx];
for (auto i = power.loop(); ~i; ++i) {
if (power.l(i) == 0) {
factor = 0;
continue;
}
compositePower(powers, powerIdx + 1, powerSum + i(), factor * power.l(i), res);
}
// int a = 1;
}
// void compositePower(const std::vector<xarray<real, 3>>& powers) {}
template <int N>
void power2BernsteinTensor(const xarray<real, N>& phiPower, xarray<real, N>& phiBernsetin)
{
xarrayInit(phiBernsetin);
for (auto i = phiPower.loop(); ~i; ++i) {
// phi.l(i) = powerFactors.l(i);
real factorBase = phiPower.l(i);
if (factorBase == 0) continue;
auto traverseRange = phiPower.ext() - i();
std::vector<std::vector<real>> decompFactors(N, std::vector<real>(max(traverseRange), 0.));
for (int dim = 0; dim < N; ++dim) {
// Sigma
size_t nDim = phiPower.ext()(dim) - 1;
const real* binomNDim = Binomial::row(nDim);
for (int j = i(dim); j <= nDim; ++j) {
const real* binomJ = Binomial::row(j);
decompFactors[dim][j - i(dim)] = binomJ[i(dim)] / binomNDim[i(dim)];
}
}
xarray<real, N> subgrid(nullptr, traverseRange);
// algoim_spark_alloc(real, subgrid);
for (auto ii = subgrid.loop(); ~ii; ++ii) {
real factor = factorBase;
for (int dim = 0; dim < N; ++dim) { factor *= decompFactors[dim][ii(dim)]; }
phiBernsetin.m(i() + ii()) += factor;
}
}
}
void powerTransformation(const uvector<real, 3>& scale, const uvector<real, 3>& bias, xarray<real, 3>& phiPower)
{
std::vector<std::vector<std::vector<real>>> dimOrderExpansion;
const auto& ext = phiPower.ext();
for (int dim = 0; dim < 3; ++dim) {
dimOrderExpansion.push_back(std::vector<std::vector<real>>(ext(dim)));
for (int degree = 0; degree < ext(dim); ++degree) {
const real* binomDegree = Binomial::row(degree);
dimOrderExpansion[dim][degree].reserve(degree + 1);
// 根据二项定理展开
for (int i = 0; i <= degree; ++i) {
dimOrderExpansion[dim][degree].push_back(binomDegree[i] * pow(scale(dim), i) * pow(bias(dim), degree - i));
}
}
}
for (auto i = phiPower.loop(); ~i; ++i) {
// 迭代器必须按照坐标的升序进行访问,即,访问ijk时,(i-1)jk,i(j-1)k,ij(k-1)必须已经访问过
real base = phiPower.l(i);
phiPower.l(i) = 0;
auto exps = i();
for (MultiLoop<3> j(0, exps + 1); ~j; ++j) {
real item = base;
for (int dim = 0; dim < 3; ++dim) { item *= dimOrderExpansion[dim][exps(dim)][j(dim)]; }
phiPower.m(j()) += item;
}
}
}
} // namespace detail
class Primitive
{
public:
virtual void print() = 0;
virtual real eval(uvector3) { return 0; }
};
template <int N>
real evalPower(const xarray<real, N>& phi, const uvector<real, N>& x)
{
real res = 0;
for (auto i = phi.loop(); ~i; ++i) {
real item = phi.l(i);
auto exps = i();
for (int dim = 0; dim < N; ++dim) { item *= pow(x(dim), exps(dim)); }
res += item;
}
return res;
}
template <int N>
real evalBernstein(const xarray<real, N>& phi, const uvector<real, N>& x)
{
return bernstein::evalBernsteinPoly(phi, x);
}
class PowerTensor : public Primitive
{
public:
xarray<real, 3> tensor;
// SparkStack<real>* sparkStackPtr;
void print() override { std::cout << "Power" << std::endl; }
real eval(uvector3 p) override { return evalPower(tensor, p); }
// PowerTensor() {}
PowerTensor(uvector<int, 3> ext_)
{
tensor.ext_ = ext_;
tensor.data_ = nullptr;
algoim_spark_alloc(real, tensor);
// sparkStackPtr = algoim_spark_alloc_heap(real, tensor);
xarrayInit(tensor);
}
// PowerTensor(xarray<real, 3> t_) : tensor(t_) {}
~PowerTensor()
{
// if (sparkStackPtr) {
// algoim_spark_release_heap(sparkStackPtr);
// sparkStackPtr = nullptr;
// }
}
};
class PowerTensorComplex : public Primitive
{
public:
xarray<real, 3> compositeTensor; // 复合后的张量
SparkStack<real>* sparkStackPtr;
// std::vector<xarray<real, 3>> tensors; // 原始张量
std::vector<PowerTensor> tensors; // 原始张量
void print() override { std::cout << "PowerTensorComplex" << std::endl; }
// PowerTensorComplex() {}
// PowerTensorComplex(const std::vector<xarray<real, 3>>& ts_) : tensors(ts_)
// {
// uvector3 ext(1, 1, 1);
// for (auto& t : ts_) { ext += t.ext() - 1; }
// compositeTensor.ext_ = ext;
// sparkStackPtr = algoim_spark_alloc_heap(real, compositeTensor);
// // detail::compositePower(tensors, 0, uvector3(0, 0, 0), 1, compositeTensor);
// }
PowerTensorComplex(const std::vector<PowerTensor>& pts_)
{
uvector3 ext(1);
for (auto& pt : pts_) { ext += pt.tensor.ext() - 1; }
compositeTensor.ext_ = ext;
sparkStackPtr = algoim_spark_alloc_heap(real, compositeTensor);
// detail::compositePower(tensors, 0, uvector3(0, 0, 0), 1, compositeTensor);
}
PowerTensorComplex(const std::vector<PowerTensorComplex>& pcs_)
{
for (auto& pc : pcs_) {
for (auto& t : pc.tensors) { tensors.push_back(t); }
}
std::vector<xarray<real, 3>> originCompositeTensors;
uvector3 ext(1, 1, 1);
for (auto& pc : pcs_) {
originCompositeTensors.push_back(pc.compositeTensor);
ext += pc.compositeTensor.ext() - 1;
}
compositeTensor.ext_ = ext;
sparkStackPtr = algoim_spark_alloc_heap(real, compositeTensor);
detail::compositePower(originCompositeTensors, 0, uvector3(0, 0, 0), 1, compositeTensor);
}
PowerTensorComplex add(const PowerTensorComplex& pc)
{
std::vector<PowerTensorComplex> pcs;
pcs.emplace_back(*this);
pcs.emplace_back(pc);
return PowerTensorComplex(pcs);
}
PowerTensorComplex add(const PowerTensor& pt)
{
std::vector<PowerTensorComplex> pcs;
pcs.emplace_back(*this);
// pcs.emplace_back(PowerTensorComplex({pt.tensor}));
return PowerTensorComplex(pcs);
}
real eval(uvector3 p) override { return evalPower(compositeTensor, p); }
bool isInside(uvector3 p)
{
for (auto& t : tensors) {
// if (evalPower(t, p) >= 0) { return false; }
}
return true;
}
};
PowerTensorComplex makeMesh(const std::vector<uvector3>& vertices, const std::vector<uvector<int, 3>>& indices)
{
uvector3 ext(1 + indices.size());
// PowerTensorComplex pc(ext);
std::vector<PowerTensor> pts;
for (const auto& index : indices) {
// xarray<real, 3> tensor(nullptr, ); // 最高1次
// algoim_spark_alloc(real, tensor);
PowerTensor pt(uvector3(2));
uvector3 V01 = vertices[index(1)] - vertices[index(0)];
uvector3 V02 = vertices[index(2)] - vertices[index(0)];
uvector3 N = cross(V01, V02);
N /= norm(N);
real d = -dot(N, vertices[index(0)]);
// 法线所指方向为>0区域
pt.tensor.m(uvector3(0, 0, 0)) = d;
pt.tensor.m(uvector3(1, 0, 0)) = N(0);
pt.tensor.m(uvector3(0, 1, 0)) = N(1);
pt.tensor.m(uvector3(0, 0, 1)) = N(2);
pts.push_back(pt);
}
PowerTensorComplex pc(pts);
pc.compositeTensor.ext_ = ext;
algoim_spark_alloc(real, pc.compositeTensor);
// detail::compositePower(pc.tensors, 0, 0, 1, pc.compositeTensor);
return pc;
}
PowerTensor makeSphere(const real r, const uvector3& c = 0, const uvector3& a = 1)
{
uvector<int, 3> ext = 3;
PowerTensor pt(ext);
for (int dim = 0; dim < 3; ++dim) {
uvector<int, 3> idx = 0;
pt.tensor.m(idx) += c(dim) * c(dim);
idx(dim) = 1;
pt.tensor.m(idx) = 2 * a(dim) * (-c(dim));
idx(dim) = 2;
pt.tensor.m(idx) = a(dim) * a(dim);
}
pt.tensor.m(0) -= r * r;
return pt;
}
PowerTensor makeCylinder(uvector3 startPt, uvector3 endPt, real r)
{
// PowerTensor pt;
// TODO:
return PowerTensor({});
}
class BernsteinPrimitive : public Primitive
{
};
class BernsteinTensor : public BernsteinPrimitive
{
public:
xarray<real, 3> tensor;
void print() override { std::cout << "Bernstein" << std::endl; }
real eval(uvector3 p) override { return evalBernstein(tensor, p); }
BernsteinTensor(const PowerTensor& pt_)
{
auto v0 = xarray2StdVector(pt_.tensor);
tensor.ext_ = pt_.tensor.ext();
algoim_spark_alloc(real, tensor);
auto v1 = xarray2StdVector(pt_.tensor);
auto v2 = xarray2StdVector(tensor);
detail::power2BernsteinTensor(pt_.tensor, tensor);
uvector3 x(0.2, 0.5, 0.6);
real BernsteinValue = bernstein::evalBernsteinPoly(tensor, x);
real PowerValue = evalPower(pt_.tensor, x);
int a = 1;
}
bool isInside(uvector3 p) { return eval(p) < 0; }
};
class BernsteinTensorComplex : public BernsteinPrimitive
{
public:
bool fromPower;
xarray<real, 3> compositeTensor; // 复合后的张量
std::vector<xarray<real, 3>> tensors; // 原始张量
void print() override { std::cout << "Bernstein Complex" << std::endl; }
real eval(uvector3 p) override { return evalBernstein(compositeTensor, p); }
// BernsteinTensorComplex(const PowerTensorComplex& pc_) : fromPower(true), tensors(pc_.tensors)
// {
// compositeTensor.ext_ = pc_.compositeTensor.ext();
// algoim_spark_alloc(real, compositeTensor);
// detail::power2BernsteinTensor(pc_.compositeTensor, compositeTensor);
// };
bool isInside(uvector3 p)
{
if (fromPower) {
for (auto& t : tensors) {
if (evalPower(t, p) >= 0) { return false; }
}
return true;
} else {
for (auto& t : tensors) {
if (eval(p) >= 0) { return false; }
}
return true;
}
return true;
};
};
class ParametricSurface
{
public:
virtual uvector3 eval(uvector2 p) { return uvector3(0, 0, 0); }
};
class BezierSurface : public ParametricSurface
{
private:
std::vector<std::vector<uvector3>> controlPoints;
};
class NURBSSurface : public ParametricSurface
{
std::vector<std::vector<uvector3>> controlPoints;
std::vector<std::vector<real>> weights;
std::vector<real> knotsU, knotsV;
int degreeU, degreeV;
};
class ParametricCurve
{
public:
virtual uvector3 eval(real p) { return uvector3(0, 0, 0); }
};
class BezierCurve : public ParametricCurve
{
private:
std::vector<uvector3> controlPoints;
};
class NURBSCurve : public ParametricCurve
{
private:
std::vector<uvector3> controlPoints;
std::vector<real> weights;
std::vector<real> knots;
int degree;
};
class BRep : public Primitive
{
std::vector<uvector3> vertices;
std::vector<ParametricCurve> curves;
std::vector<ParametricSurface> surfaces;
public:
void print() override { std::cout << "FRep" << std::endl; }
real eval(uvector3 p) override
{
// DOTO: the implicit conversion of Parametric BRep
return 0;
}
BRep(const std::vector<uvector3>& vs_, const std::vector<ParametricCurve>& cs_, const std::vector<ParametricSurface>& ss_)
: vertices(vs_), curves(cs_), surfaces(ss_)
{
}
BRep(const BRep& brep)
{
vertices = brep.vertices;
curves = brep.curves;
surfaces = brep.surfaces;
}
};
class FRep : public Primitive
{
private:
std::function<real(uvector3)> f;
public:
void print() override { std::cout << "FRep" << std::endl; }
real eval(uvector3 p) override { return f(p); }
FRep(std::function<real(uvector3)> f_) : f(f_) {}
};
} // namespace algoim::Organizer