#pragma once #include #include #include #include #include "iostream" #include "multiloop.hpp" #include "polyset.hpp" #include "sparkstack.hpp" #include "uvector.hpp" #include "real.hpp" #include "xarray.hpp" #include "binomial.hpp" #include "bernstein.hpp" namespace algoim::Organizer { namespace detail { template void power2BernsteinTensor(const xarray& phiPower, xarray& phiBernsetin) { xarrayInit(phiBernsetin); for (auto i = phiPower.loop(); ~i; ++i) { // phi.l(i) = powerFactors.l(i); real factorBase = phiPower.l(i); if (factorBase == 0) continue; auto traverseRange = phiPower.ext() - i(); std::vector> decompFactors(N, std::vector(max(traverseRange), 0.)); for (int dim = 0; dim < N; ++dim) { // Sigma size_t nDim = phiPower.ext()(dim) - 1; const real* binomNDim = Binomial::row(nDim); for (int j = i(dim); j <= nDim; ++j) { const real* binomJ = Binomial::row(j); decompFactors[dim][j - i(dim)] = binomJ[i(dim)] / binomNDim[i(dim)]; } } xarray subgrid(nullptr, traverseRange); // algoim_spark_alloc(real, subgrid); for (auto ii = subgrid.loop(); ~ii; ++ii) { real factor = factorBase; for (int dim = 0; dim < N; ++dim) { factor *= decompFactors[dim][ii(dim)]; } phiBernsetin.m(i() + ii()) += factor; } } } void powerTransformation(const uvector& scale, const uvector& bias, const xarray& origin, xarray& res) { assert(all(origin.ext() == res.ext())); std::vector>> dimOrderExpansion; const auto& ext = origin.ext(); for (int dim = 0; dim < 3; ++dim) { dimOrderExpansion.push_back(std::vector>(ext(dim))); for (int degree = 0; degree < ext(dim); ++degree) { const real* binomDegree = Binomial::row(degree); dimOrderExpansion[dim][degree].reserve(degree + 1); // 根据二项定理展开 for (int i = 0; i <= degree; ++i) { dimOrderExpansion[dim][degree].push_back(binomDegree[i] * pow(scale(dim), i) * pow(bias(dim), degree - i)); } } } for (auto i = origin.loop(); ~i; ++i) { // 迭代器必须按照坐标的升序进行访问,即,访问ijk时,(i-1)jk,i(j-1)k,ij(k-1)必须已经访问过 real base = origin.l(i); res.l(i) = 0; auto exps = i(); for (MultiLoop<3> j(0, exps + 1); ~j; ++j) { real item = base; for (int dim = 0; dim < 3; ++dim) { item *= dimOrderExpansion[dim][exps(dim)][j(dim)]; } res.m(j()) += item; } } } void powerTransformation(const uvector& scale, const uvector& bias, xarray& phiPower) { std::vector>> dimOrderExpansion; const auto& ext = phiPower.ext(); for (int dim = 0; dim < 3; ++dim) { dimOrderExpansion.push_back(std::vector>(ext(dim))); for (int degree = 0; degree < ext(dim); ++degree) { const real* binomDegree = Binomial::row(degree); dimOrderExpansion[dim][degree].reserve(degree + 1); // 根据二项定理展开 for (int i = 0; i <= degree; ++i) { dimOrderExpansion[dim][degree].push_back(binomDegree[i] * pow(scale(dim), i) * pow(bias(dim), degree - i)); } } } for (auto i = phiPower.loop(); ~i; ++i) { // 迭代器必须按照坐标的升序进行访问,即,访问ijk时,(i-1)jk,i(j-1)k,ij(k-1)必须已经访问过 real base = phiPower.l(i); phiPower.l(i) = 0; auto exps = i(); for (MultiLoop<3> j(0, exps + 1); ~j; ++j) { real item = base; for (int dim = 0; dim < 3; ++dim) { item *= dimOrderExpansion[dim][exps(dim)][j(dim)]; } phiPower.m(j()) += item; } } } static void compositePower(const std::vector>& powers, int powerIdx, uvector powerSum, real factor, xarray& res) { if (powerIdx == 0) { { uvector3 ext(1, 1, 1); for (auto& t : powers) { ext += t.ext() - 1; } assert(all(ext == res.ext())); } xarrayInit(res); } if (powerIdx == powers.size()) { res.m(powerSum) += factor; return; } auto& power = powers[powerIdx]; for (auto i = power.loop(); ~i; ++i) { if (power.l(i) == 0) { factor = 0; continue; } compositePower(powers, powerIdx + 1, powerSum + i(), factor * power.l(i), res); } } } // namespace detail class Primitive { public: virtual void print() = 0; virtual real eval(const uvector3&) { return 0; } }; template real evalPower(const xarray& phi, const uvector& x) { real res = 0; for (auto i = phi.loop(); ~i; ++i) { real item = phi.l(i); auto exps = i(); for (int dim = 0; dim < N; ++dim) { item *= pow(x(dim), exps(dim)); } res += item; } return res; } template real evalBernstein(const xarray& phi, const uvector& x) { return bernstein::evalBernsteinPoly(phi, x); } // class PowerTensor : public Primitive // { // public: // xarray tensor; // // SparkStack* sparkStackPtr; // void print() override { std::cout << "Power" << std::endl; } // real eval(const uvector3& p) override { return evalPower(tensor, p); } // // PowerTensor() {} // PowerTensor(const xarray& t_) : tensor(t_) {} // // const xarray& getTensor() { return tensor; } // ~PowerTensor() = default; // }; // class PowerTensorComplex : public Primitive // { // public: // xarray compositeTensor; // 复合后的张量 // SparkStack* sparkStackPtr; // std::vector> tensors; // 原始张量 // // std::vector powerTensors; // 原始张量 // void print() override { std::cout << "PowerTensorComplex" << std::endl; } // static void compositePower(const std::vector& powers, // int powerIdx, // uvector powerSum, // real factor, // xarray& res) // { // // const xarray& tensor // if (powerIdx == 0) { // { // uvector3 ext(1, 1, 1); // for (auto& t : powers) { ext += t.tensor.ext() - 1; } // assert(all(ext == res.ext())); // } // xarrayInit(res); // } // if (powerIdx == powers.size()) { // res.m(powerSum) += factor; // return; // } // auto& tensor = powers[powerIdx].tensor; // for (auto i = tensor.loop(); ~i; ++i) { // if (tensor.l(i) == 0) { // factor = 0; // continue; // } // compositePower(powers, powerIdx + 1, powerSum + i(), factor * tensor.l(i), res); // } // } // static void compositePower(const std::vector>& powers, // int powerIdx, // uvector powerSum, // real factor, // xarray& res) // { // if (powerIdx == 0) { // { // uvector3 ext(1, 1, 1); // for (auto& t : powers) { ext += t.ext() - 1; } // assert(all(ext == res.ext())); // } // xarrayInit(res); // } // if (powerIdx == powers.size()) { // res.m(powerSum) += factor; // return; // } // auto& power = powers[powerIdx]; // for (auto i = power.loop(); ~i; ++i) { // if (power.l(i) == 0) { // factor = 0; // continue; // } // compositePower(powers, powerIdx + 1, powerSum + i(), factor * power.l(i), res); // } // } // // PowerTensorComplex() {} // PowerTensorComplex(const std::vector>& ts_, xarray& ct_) : tensors(ts_), compositeTensor(ct_) // { // uvector3 ext(1); // for (auto& t : ts_) { ext += t.ext() - 1; } // assert(all(ext == compositeTensor.ext())); // compositePower(tensors, 0, uvector3(0), 1, compositeTensor); // } // PowerTensorComplex(const std::vector& pts_, xarray& ct_) : compositeTensor(ct_) // { // uvector3 ext(1); // tensors.resize(pts_.size()); // for (int i = 0; i < pts_.size(); ++i) { // tensors[i] = pts_[i].tensor; // ext += pts_[i].tensor.ext() - 1; // } // assert(all(ext == compositeTensor.ext())); // compositePower(tensors, 0, uvector3(0), 1, compositeTensor); // } // PowerTensorComplex(const std::vector& ptcs_, xarray& ct_) : compositeTensor(ct_) // { // std::vector> originCompositeTensors; // uvector3 ext(1); // for (auto& ptc : ptcs_) { // for (auto& t : ptc.tensors) { tensors.emplace_back(t); } // originCompositeTensors.push_back(ptc.compositeTensor); // ext += ptc.compositeTensor.ext() - 1; // } // compositePower(originCompositeTensors, 0, uvector3(0, 0, 0), 1, compositeTensor); // } // real eval(const uvector3& p) override { return evalPower(compositeTensor, p); } // bool isInside(const uvector3& p) // { // for (auto& t : tensors) { // if (evalPower(t, p) >= 0) { return false; } // } // return true; // } // }; // class BernsteinPrimitive : public Primitive // { // }; // class BernsteinTensor : public BernsteinPrimitive // { // public: // xarray tensor; // void print() override { std::cout << "Bernstein" << std::endl; } // real eval(const uvector3& p) override { return evalBernstein(tensor, p); } // BernsteinTensor(const PowerTensor& pt_) // { // auto v0 = xarray2StdVector(pt_.tensor); // tensor.ext_ = pt_.tensor.ext(); // algoim_spark_alloc(real, tensor); // auto v1 = xarray2StdVector(pt_.tensor); // auto v2 = xarray2StdVector(tensor); // detail::power2BernsteinTensor(pt_.tensor, tensor); // uvector3 x(0.2, 0.5, 0.6); // real BernsteinValue = bernstein::evalBernsteinPoly(tensor, x); // real PowerValue = evalPower(pt_.tensor, x); // int a = 1; // } // bool isInside(uvector3 p) { return eval(p) < 0; } // }; // class BernsteinTensorComplex : public BernsteinPrimitive // { // public: // bool fromPower; // xarray compositeTensor; // 复合后的张量 // std::vector> tensors; // 原始张量 // void print() override { std::cout << "Bernstein Complex" << std::endl; } // real eval(const uvector3& p) override { return evalBernstein(compositeTensor, p); } // // BernsteinTensorComplex(const PowerTensorComplex& pc_) : fromPower(true), tensors(pc_.tensors) // // { // // compositeTensor.ext_ = pc_.compositeTensor.ext(); // // algoim_spark_alloc(real, compositeTensor); // // detail::power2BernsteinTensor(pc_.compositeTensor, compositeTensor); // // }; // bool isInside(uvector3 p) // { // if (fromPower) { // for (auto& t : tensors) { // if (evalPower(t, p) >= 0) { return false; } // } // return true; // } else { // for (auto& t : tensors) { // if (eval(p) >= 0) { return false; } // } // return true; // } // return true; // }; // }; bool isInsidePowers(const std::vector& tensors, const uvector3& p) { for (auto& t : tensors) { if (evalPower(t, p) >= 0) { return false; } } return true; }; bool isInsideBernstein(const tensor3& t, const uvector3& p) { return evalBernstein(t, p) < 0; } bool isInsidePower(const tensor3& t, const uvector3& p) { return evalPower(t, p) < 0; } class FRep : public Primitive { private: std::function f; public: void print() override { std::cout << "FRep" << std::endl; } real eval(const uvector3& p) override { return f(p); } FRep(std::function f_) : f(f_) {} }; enum PrimitiveType { Sphere, Cylinder, Cone, Mesh, BRep }; class PrimitiveDesc { public: // const static PrimitiveType type; PrimitiveDesc() = default; virtual void print() {} // 空定义也可以,但是一定要有定义 }; class ParametricSurface { public: virtual uvector3 eval(uvector2 p) { return uvector3(0, 0, 0); } }; class BezierSurface : public ParametricSurface { private: std::vector> controlPoints; }; class NURBSSurface : public ParametricSurface { std::vector> controlPoints; std::vector> weights; std::vector knotsU, knotsV; int degreeU, degreeV; }; class ParametricCurve { public: virtual uvector3 eval(real p) { return uvector3(0, 0, 0); } }; class BezierCurve : public ParametricCurve { private: std::vector controlPoints; }; class NURBSCurve : public ParametricCurve { private: std::vector controlPoints; std::vector weights; std::vector knots; int degree; }; class BRepDesc : virtual public PrimitiveDesc { const static PrimitiveType type = BRep; std::vector vertices; std::vector curves; std::vector surfaces; public: void print() override { std::cout << "BRep Description" << std::endl; } real eval(const uvector3& p) { // DOTO: the implicit conversion of Parametric BRep return 0; } BRepDesc(const std::vector& vs_, const std::vector& cs_, const std::vector& ss_) : vertices(vs_), curves(cs_), surfaces(ss_) { } BRepDesc(const BRepDesc& brep) { vertices = brep.vertices; curves = brep.curves; surfaces = brep.surfaces; } }; class SphereDesc : virtual public PrimitiveDesc { public: const static PrimitiveType type = Sphere; real radius; uvector3 center; uvector3 amplitude; SphereDesc(real r_, const uvector3& c_, const uvector3& a_) : PrimitiveDesc(), radius(r_), center(c_), amplitude(a_) {} void print() override { std::cout << "Sphere Description" << std::endl; } }; class CylinderDesc : virtual public PrimitiveDesc { const static PrimitiveType type = Cylinder; uvector3 node1; uvector3 node2; real radius; CylinderDesc(const uvector3& n1_, const uvector3& n2_, real r_) : PrimitiveDesc(), node1(n1_), node2(n2_), radius(r_) {} void print() override { std::cout << "Cylinder Description" << std::endl; } }; class ConeDesc : virtual public PrimitiveDesc { const static PrimitiveType type = Cone; uvector3 node1; uvector3 node2; real radius; ConeDesc(const uvector3& n1_, const uvector3& n2_, real r_) : PrimitiveDesc(), node1(n1_), node2(n2_), radius(r_) {} void print() override { std::cout << "Cone Description" << std::endl; } }; class MeshDesc : virtual public PrimitiveDesc { public: const static PrimitiveType type = Mesh; std::vector vertices; std::vector indices; std::vector indexInclusiveScan; MeshDesc(const std::vector& vertices_, const std::vector& indices_, const std::vector& indexInclusiveScan_) : PrimitiveDesc(), vertices(vertices_), indices(indices_), indexInclusiveScan(indexInclusiveScan_) { } void print() override { std::cout << "Mesh Description" << std::endl; } }; void makeMesh(const MeshDesc& mesh, xarray& tensor, std::vector>& planeTensors) { uvector3 ext(1 + mesh.indexInclusiveScan.size()); assert(all(ext == tensor.ext())); assert(planeTensors.size() == mesh.indexInclusiveScan.size()); // for (const auto& index : indices) { for (int i = 0; i < mesh.indexInclusiveScan.size(); ++i) { const int indexBeg = i == 0 ? 0 : mesh.indexInclusiveScan[i - 1]; const int indexSize = mesh.indexInclusiveScan[i] - indexBeg; assert(indexSize >= 3); auto& planeTensor = planeTensors[i]; xarrayInit(planeTensor); auto& vertices = mesh.vertices; auto& indices = mesh.indices; uvector3 V01 = vertices[indices[indexBeg + 1]] - mesh.vertices[indices[indexBeg]]; uvector3 V02 = vertices[indices[indexBeg + 2]] - mesh.vertices[indices[indexBeg]]; uvector3 N = cross(V01, V02); N /= norm(N); real d = -dot(N, vertices[indices[indexBeg]]); // 法线所指方向为>0区域 planeTensor.m(uvector3(0, 0, 0)) = d; planeTensor.m(uvector3(1, 0, 0)) = N(0); planeTensor.m(uvector3(0, 1, 0)) = N(1); planeTensor.m(uvector3(0, 0, 1)) = N(2); // test other vertices for (int j = indexBeg + 3; j < mesh.indexInclusiveScan[i]; ++j) { assert(dot(N, vertices[indices[j]]) + d < std::numeric_limits::epsilon()); } } detail::compositePower(planeTensors, 0, 0, 1, tensor); // return PowerTensorComplex(planeTensors, tensor); }; void makeSphere(const SphereDesc& sphereDesc, xarray& tensor) { uvector ext = 3; assert(all(ext == tensor.ext())); for (int dim = 0; dim < 3; ++dim) { uvector idx = 0; tensor.m(idx) += sphereDesc.center(dim) * sphereDesc.center(dim); idx(dim) = 1; tensor.m(idx) = 2 * sphereDesc.amplitude(dim) * (-sphereDesc.center(dim)); idx(dim) = 2; tensor.m(idx) = sphereDesc.amplitude(dim) * sphereDesc.amplitude(dim); } tensor.m(0) -= sphereDesc.radius * sphereDesc.radius; // return PowerTensor(tensor); }; void makeCylinder(xarray& tensor, uvector3 startPt, uvector3 endPt, real r) { // PowerTensor pt; // TODO: } } // namespace algoim::Organizer