#include #include #include #include #include #include #include #include #include #include "bernstein.hpp" #include "multiloop.hpp" #include "quadrature_multipoly.hpp" #include "binomial.hpp" #include "real.hpp" #include "sparkstack.hpp" #include "utility.hpp" #include "uvector.hpp" #include "vector" #include "xarray.hpp" #include #include #include "organizer/primitive.hpp" #include "organizer/organizer.hpp" #include "organizer/blobtree.hpp" using namespace algoim::organizer; using namespace algoim; // void casePolyhedron1() // { // // std::vector> ps; // // mesh // std::vector vertices = {uvector3(-0.8, -0.8, -0.8), uvector3(-0.8, -0.8, 0.8), uvector3(-0.8, 0.8, -0.8), // uvector3(-0.8, 0.8, 0.8), uvector3(0.8, -0.8, -0.8), uvector3(0.8, -0.8, 0.8), // uvector3(0.8, 0.8, -0.8), uvector3(0.8, 0.8, 0.8)}; // std::vector indices = {3, 2, 0, 1, // left // 4, 6, 7, 5, // right // 6, 2, 3, 7, // top // 1, 0, 4, 5, // bottom // 7, 3, 1, 5, // front // 2, 6, 4, 0}; // back // std::vector scan = {4, 8, 12, 16, 20, 24}; // // ps.emplace_back(std::make_shared(vertices, indices, scan)); // // ps.emplace_back(std::make_shared(0.8, 0., 1.)); // // ps.emplace_back(std::make_shared(makeSphere(0.2))); // // ps.emplace_back(std::make_shared(MeshDesc(vertices, indices, scan))); // basicTask(std::make_shared(MeshDesc(vertices, indices, scan))); // } void casePolyhedron2() { // std::vector> ps; // mesh std::vector vertices = {uvector3(-0.8, -0.8, -0.8), uvector3(-0.8, -0.8, 0.8), uvector3(-0.8, 0.8, -0.8), uvector3(-0.8, 0.8, 0.8), uvector3(0.8, -0.8, -0.8), uvector3(0.8, -0.8, 0.8), uvector3(0.8, 0.8, -0.8), uvector3(0.8, 0.8, 0.8)}; std::vector indices = { 3, 2, 0, 1, // left 6, 2, 3, 7 // top }; std::vector scan = {4, 8}; // ps.emplace_back(std::make_shared(vertices, indices, scan)); // ps.emplace_back(std::make_shared(0.8, 0., 1.)); // ps.emplace_back(std::make_shared(makeSphere(0.2))); // ps.emplace_back(std::make_shared(MeshDesc(vertices, indices, scan))); basicTask(std::make_shared(MeshDesc(vertices, indices, scan))); } void casePolyhedron3() { std::vector> primitiveDescriptions; // std::vector vertices = {uvector3(-1.6, 0, 0), // uvector3(-1.6, 0, 1.6), // uvector3(-1.6, 1.6, 0), // uvector3(-1.6, 1.6, 1.6), // uvector3(1.6, 0, 0), // uvector3(1.6, 0, 1.6), // uvector3(1.6, 1.6, 0), // uvector3(1.6, 1.6, 1.6)}; std::vector vertices = {uvector3(-0.8, -0.8, -0.8), uvector3(-0.8, -0.8, 0.8), uvector3(-0.8, 0.8, -0.8), uvector3(-0.8, 0.8, 0.8), uvector3(0.8, -0.8, -0.8), uvector3(0.8, -0.8, 0.8), uvector3(0.8, 0.8, -0.8), uvector3(0.8, 0.8, 0.8)}; std::vector indices = {3, 2, 0, 1, // left 6, 2, 3, 7, // top // 7, 3, 1, // 5, // front 2, 6, 4, 0}; // back std::vector scan = {4, 8, 12}; // std::vector indices = {1, 2, 5, // // 5, 2, 4, // // 1, 4, 2}; // std::vector scan = {3, 6, 9}; basicTask(std::make_shared(MeshDesc(vertices, indices, scan))); } void casePolyhedronSphere() { // PI * r^3 / 6 auto phi0 = std::make_shared(SphereDesc(0.8, uvector3(-0.8, 0.8, -0.8), 1.)); std::vector vertices = {uvector3(-0.8, -0.8, -0.8), uvector3(-0.8, -0.8, 0.8), uvector3(-0.8, 0.8, -0.8), uvector3(-0.8, 0.8, 0.8), uvector3(0.8, -0.8, -0.8), uvector3(0.8, -0.8, 0.8), uvector3(0.8, 0.8, -0.8), uvector3(0.8, 0.8, 0.8)}; std::vector indices = {3, 2, 0, 1, // left 6, 2, 3, 7, // top 2, 6, 4, 0}; // back std::vector scan = {4, 8, 12}; std::vector> primitiveDescriptions(3); primitiveDescriptions[0] = phi0; primitiveDescriptions[1] = std::make_shared(MeshDesc(vertices, indices, scan)); basicTask(primitiveDescriptions); } void caseTwoCube() { auto phi0 = std::make_shared(CuboidDesc(0.2, 0.6)); auto phi1 = std::make_shared(CuboidDesc(-0.2, 0.6)); basicTask({phi0, phi1}); } void caseCubeSphere() { auto phi0 = std::make_shared(CuboidDesc(0.2, 0.6)); auto phi1 = std::make_shared(SphereDesc(0.6, -0.2, 1.)); basicTask({phi0, phi1}); } void caseCone() { const int PRIMITIVE_CNT = 4; std::vector> primitiveDescriptions(PRIMITIVE_CNT); primitiveDescriptions[0] = std::make_shared(CuboidDesc(0.0, 1.6)); primitiveDescriptions[1] = std::make_shared(CuboidDesc(uvector3(0.6, 0.6, -0.6), 2.)); primitiveDescriptions[2] = std::make_shared(SphereDesc(0.2, uvector3(0.2, -0.7, 0.), 1.)); primitiveDescriptions[3] = std::make_shared(ConeDesc(uvector3(0., -0.2, 0.), 0.4, -0.7, 1)); organizer::BlobTree blobTree; blobTree.structure.resize(PRIMITIVE_CNT * 2 - 1); blobTree.primitiveNodeIdx.resize(PRIMITIVE_CNT); // blobTree.structure[0] = {0, 0, NODE_IN_OUT_UNKNOWN, 0, 1, 2}; // cube1 blobTree.structure[0] = {1, 0, NODE_IN_OUT_UNKNOWN, 0, 1, 2 - 0}; // cube blobTree.structure[1] = {1, 0, 0, 0, 0, 0}; // cube2 blobTree.structure[2] = {0, OP_UNION, 0, 0, 1, 6 - 2}; // Union of cubes = opNode1 blobTree.structure[3] = {1, 0, NODE_IN_OUT_UNKNOWN, 0, 1, 5 - 3}; // cone blobTree.structure[4] = {1, 0, NODE_IN_OUT_UNKNOWN, 0, 0, 0}; // sphere blobTree.structure[5] = {0, OP_UNION, NODE_IN_OUT_UNKNOWN, 0, 0, 0}; // cone u sphere = n1 blobTree.structure[6] = {0, OP_DIFFERENCE, NODE_IN_OUT_UNKNOWN, 0, 0, 0}; // cube - n1 = n2 blobTree.primitiveNodeIdx = {0, 1, 3, 4}; quadratureScene(primitiveDescriptions, uvector3(-0.8, -1.3, -1.6), uvector3(1.6, 1.6, 1.5), blobTree, 10); } void caseScene() { const int PRIMITIVE_CNT = 6; std::vector> primitiveDescriptions(PRIMITIVE_CNT); primitiveDescriptions[0] = std::make_shared(CuboidDesc(0., 1.6)); primitiveDescriptions[1] = std::make_shared(CuboidDesc(uvector3(0.6, 0.6, -0.6), 2.)); // primitiveDescriptions[1] = std::make_shared(SphereDesc(1., uvector3(0.6, 0.6, -0.6), 1.)); primitiveDescriptions[2] = std::make_shared(SphereDesc(0.7, uvector3(0.8, 0.8, 0.8), 1.)); primitiveDescriptions[3] = std::make_shared(SphereDesc(0.5, uvector3(-0.3, -0.8, 0.8), 1.)); std::vector pyramidBottomVertices = { uvector3{-1, -1, 0}, uvector3{1, -1, 0}, uvector3{1, 1, 0}, uvector3{-1, 1, 0} }; // primitiveDescriptions[4] = std::make_shared(pyramidBottomVertices, uvector3{0, 0, 1}); primitiveDescriptions[4] = std::make_shared(SphereDesc(0.2, uvector3(0.2, -0.7, 0.), 1.)); // primitiveDescriptions[5] = std::make_shared(SphereDesc(0.2, uvector3(0., -0.5, 0.), 1)); primitiveDescriptions[5] = std::make_shared(ConeDesc(uvector3(0., -0.2, 0.), 0.4, -0.7, 1)); // primitiveDescriptions[6] = std::make_shared(CylinderDesc(uvector3(-0.3, 0.3, 2.3), 0.4, 3.6, 1)); organizer::BlobTree blobTree; blobTree.structure.resize(PRIMITIVE_CNT * 2 - 1); blobTree.primitiveNodeIdx.resize(PRIMITIVE_CNT); blobTree.structure[0] = {1, 0, 0, 0, 1, 2}; // cube1 blobTree.structure[1] = {1, 0, 0, 0, 0, 0}; // cube2 blobTree.structure[2] = {0, OP_UNION, 0, 0, 1, 6 - 2}; // Union of cubes = opNode1 blobTree.structure[3] = {1, 0, 0, 0, 1, 5 - 3}; // sphere1 blobTree.structure[4] = {1, 0, 0, 0, 0, 0}; // sphere2 blobTree.structure[5] = {0, OP_UNION, 0, 0, 0, 0}; // Union of spheres = opNode2 blobTree.structure[6] = {0, OP_DIFFERENCE, 0, 0, 1, 10 - 6}; // Difference of opNode1 and opNode2 = opNode3 blobTree.structure[7] = {1, 0, 0, 0, 1, 9 - 7}; // Pyramid (sphere3) blobTree.structure[8] = {1, 0, 0, 0, 0, 0}; // Cone blobTree.structure[9] = {0, OP_UNION, 0, 0, 0, 0}; // UNION of Pyramid (sphere3) and Cone = opNode4 blobTree.structure[10] = { 0, OP_DIFFERENCE, 0, 0, 1, 12 - 10}; // Difference of opNode3 and opNode4 = opNode5 // blobTree.structure[11] = {1, 0, 0, 0, 0, 0}; // Cylinder // blobTree.structure[12] = {0, 2, 0, 0, 1, 0}; // Difference of opNode5 and Cylinder // blobTree.primitiveNodeIdx = {0, 1, 3, 4, 7, 8, 11}; // quadratureScene(primitiveDescriptions, uvector3(-1., -1.3, -1.6), uvector3(1.6, 1.6, 2.3), blobTree); blobTree.primitiveNodeIdx = {0, 1, 3, 4, 7, 8}; quadratureScene(primitiveDescriptions, uvector3(-0.8, -1.3, -1.6), uvector3(1.6, 1.6, 1.5), blobTree); } void caseScene1() { const int PRIMITIVE_CNT = 2; std::vector> primitiveDescriptions(PRIMITIVE_CNT); primitiveDescriptions[0] = std::make_shared(CuboidDesc(0., 1.6)); primitiveDescriptions[1] = std::make_shared(CuboidDesc(uvector3(0.6, 0.6, -0.6), 2.)); organizer::BlobTree blobTree; blobTree.structure.resize(PRIMITIVE_CNT * 2 - 1); blobTree.primitiveNodeIdx.resize(PRIMITIVE_CNT); // blobTree.structure[0] = {0, 0, NODE_IN_OUT_UNKNOWN, 0, 1, 2}; // cube1 blobTree.structure[0] = {1, 0, NODE_IN_OUT_UNKNOWN, 0, 1, 2}; // cube1 blobTree.structure[1] = {1, 0, NODE_IN_OUT_UNKNOWN, 0, 0, 0}; // cube2 blobTree.structure[2] = {0, OP_INTERSECTION, NODE_IN_OUT_UNKNOWN, 0, 0, 0}; // INTERSECTION of cubes = opNode1 blobTree.primitiveNodeIdx = {0, 1}; quadratureScene(primitiveDescriptions, uvector3(-0.8, -1.3, -1.6), uvector3(1.6, 1.6, 1.5), blobTree); } void caseScene2() { const int PRIMITIVE_CNT = 4; std::vector> primitiveDescriptions(PRIMITIVE_CNT); primitiveDescriptions[0] = std::make_shared(CuboidDesc(0., 1.6)); primitiveDescriptions[1] = std::make_shared(CuboidDesc(uvector3(0.6, 0.6, -0.6), 2.)); primitiveDescriptions[2] = std::make_shared(SphereDesc(0.7, uvector3(0.8, 0.8, 0.8), 1.)); primitiveDescriptions[3] = std::make_shared(SphereDesc(0.5, uvector3(-0.3, -0.8, 0.8), 1.)); std::vector pyramidBottomVertices = { uvector3{-1, -1, 0}, uvector3{1, -1, 0}, uvector3{1, 1, 0}, uvector3{-1, 1, 0} }; organizer::BlobTree blobTree; blobTree.structure.resize(PRIMITIVE_CNT * 2 - 1); blobTree.primitiveNodeIdx.resize(PRIMITIVE_CNT); // blobTree.structure[0] = {0, 0, NODE_IN_OUT_UNKNOWN, 0, 1, 2}; // cube1 blobTree.structure[0] = {1, 0, NODE_IN_OUT_UNKNOWN, 0, 1, 2 - 0}; // cube1 blobTree.structure[1] = {1, 0, NODE_IN_OUT_UNKNOWN, 0, 0, 0}; // cube2 blobTree.structure[2] = {0, OP_UNION, NODE_IN_OUT_UNKNOWN, 0, 1, 6 - 2}; // INTERSECTION of cubes = opNode1 blobTree.structure[3] = {1, 0, 0, 0, 1, 5 - 3}; // sphere1 blobTree.structure[4] = {1, 0, 0, 0, 0, 0}; // sphere2 blobTree.structure[5] = {0, OP_UNION, 0, 0, 0, 0}; // Union of spheres = opNode2 blobTree.structure[6] = {0, OP_DIFFERENCE, 0, 0, 1, 10 - 6}; // Difference of opNode1 and opNode2 = opNode3 blobTree.primitiveNodeIdx = {0, 1, 3, 4}; quadratureScene(primitiveDescriptions, uvector3(-0.8, -1.3, -1.6), uvector3(1.6, 1.6, 1.5), blobTree); } void testDeCasteljau() { auto phiDesc = std::make_shared(SphereDesc(0.8, uvector3(0), 1.)); tensor3 tensor(nullptr, 3), tensor01(nullptr, 3), tensorBernstein(nullptr, 3), transformedTensorBernstein(nullptr, 3); algoim_spark_alloc(real, tensor, tensor01, tensorBernstein, transformedTensorBernstein); VisiblePrimitiveRep visiblePrimitiveRep{{tensor}, AABB{}, BlobTree()}; makeSphere(*phiDesc, visiblePrimitiveRep); uvector3 xmax = 1, xmin = -1, range = xmax - xmin; organizer::detail::powerTransformation(range, xmin, tensor, tensor01); organizer::detail::power2BernsteinTensor(tensor01, tensorBernstein); // bernstein::deCasteljau(tensorBernstein, uvector3(0), uvector3(0.2690598923241497 + 0.0000001), // transformedTensorBernstein); bernstein::deCasteljau(tensorBernstein, uvector3(0.2690598923241497 + 0.0000001), uvector3(1 - 0.2690598923241497 - 0.0000001), transformedTensorBernstein); uvector3 testX = uvector3(0.5); int sign = bernstein::uniformSign(transformedTensorBernstein); real evalX = evalPower(tensor, testX); std::cout << "evalX original rep = " << evalX << std::endl; evalX = bernstein::evalBernsteinPoly(tensorBernstein, testX); std::cout << "evalX bernstein within 0-1 = " << evalX << std::endl; evalX = bernstein::evalBernsteinPoly(transformedTensorBernstein, testX); std::cout << "evalX bernstein after Decasteljau = " << evalX << std::endl; std::cout << "sign = " << sign << std::endl; } void testSubDivideWithDeCasteljau() { auto phiDesc = std::make_shared(SphereDesc(0.7, uvector3(0.8), 1.)); tensor3 tensor(nullptr, 3), tensor01(nullptr, 3), tensorBernstein(nullptr, 3), transformedTensorBernstein(nullptr, 3); algoim_spark_alloc(real, tensor, tensor01, tensorBernstein, transformedTensorBernstein); VisiblePrimitiveRep visiblePrimitiveRep{{tensor}, AABB{}, BlobTree()}; makeSphere(*phiDesc, visiblePrimitiveRep); uvector3 xmin = uvector3(-1., -1.3, -1.6), xmax = uvector3(1.6, 1.6, 2.3), range = xmax - xmin; organizer::detail::powerTransformation(range, xmin, tensor, tensor01); organizer::detail::power2BernsteinTensor(tensor01, tensorBernstein); xmin = 0, xmax = 1; // bernstein::deCasteljau(tensorBernstein, uvector3(0), uvector3(0.2690598923241497 + 0.0000001), // transformedTensorBernstein); for (MultiLoop<3> j(0, 2); ~j; ++j) { auto aabbSub = organizer::detail::getOneEightCellAABB(AABB{xmin, xmax}, j(), 0); bernstein::deCasteljau(tensorBernstein, aabbSub.min, aabbSub.max, transformedTensorBernstein); auto transformedTensorVec = xarray2StdVector(transformedTensorBernstein); int sign = bernstein::uniformSign(transformedTensorBernstein); std::cout << "j(): (" << j(0) << ", " << j(1) << ", " << j(2) << "), sign: " << sign << std::endl; if (all(j() == uvector3i(0, 0, 1))) { for (MultiLoop<3> k(0, 2); ~k; ++k) { auto aabbSubSub = organizer::detail::getOneEightCellAABB(aabbSub, k(), 0); bernstein::deCasteljau(tensorBernstein, aabbSubSub.min, aabbSubSub.max, transformedTensorBernstein); int sign = bernstein::uniformSign(transformedTensorBernstein); std::cout << "k(): (" << k(0) << ", " << k(1) << ", " << k(2) << "), sign: " << sign << std::endl; } } } uvector3 testX = uvector3(0.5); real evalX = evalPower(tensor, testX); std::cout << "evalX original rep = " << evalX << std::endl; evalX = evalPower(tensor01, testX); std::cout << "evalX power within 0-1 = " << evalX << std::endl; evalX = bernstein::evalBernsteinPoly(tensorBernstein, testX); std::cout << "evalX bernstein within 0-1 = " << evalX << std::endl; // 切比雪夫 xmin = uvector3(-1., -1.3, -1.6), xmax = uvector3(1.6, 1.6, 2.3); auto phi = [](const uvector &x) { return (x(0) - 0.8) * (x(0) - 0.8) + (x(1) - 0.8) * (x(1) - 0.8) + (x(2) - 0.8) * (x(2) - 0.8) - 0.1 * 0.1; }; xarray phipoly(nullptr, 3), subPhiPoly(nullptr, 3); algoim_spark_alloc(real, phipoly, subPhiPoly); bernstein::bernsteinInterpolate<3>([&](const uvector &x) { return phi(xmin + x * (xmax - xmin)); }, phipoly); xmin = 0, xmax = 1; for (MultiLoop<3> j(0, 2); ~j; ++j) { auto aabbSub = organizer::detail::getOneEightCellAABB(AABB{xmin, xmax}, j(), 0); bernstein::deCasteljau(phipoly, aabbSub.min, aabbSub.max, subPhiPoly); int sign = bernstein::uniformSign(subPhiPoly); std::cout << "j(): (" << j(0) << ", " << j(1) << ", " << j(2) << "), sign: " << sign << std::endl; } } void testPlaneUniformSign() { uvector3 xmin = -1, xmax = 1, scale = xmax - xmin; tensor3 planeTensor(nullptr, 2); algoim_spark_alloc(real, planeTensor); xarrayInit(planeTensor); uvector3 dim = 0; planeTensor.m(0) = -3.01; planeTensor.m(0) = -3.00001; planeTensor.m(0) = 3.00001; planeTensor.m(0) = 3.0000; planeTensor.m(uvector3{1, 0, 0}) = 1.0; planeTensor.m(uvector3{0, 1, 0}) = 1.0; planeTensor.m(uvector3{0, 0, 1}) = 1.0; organizer::detail::powerTransformation(scale, xmin, planeTensor); organizer::detail::power2BernsteinTensor(planeTensor); int sign = bernstein::uniformSign(planeTensor); std::cout << "sign = " << sign << std::endl; } void testPlaneWithinSubcell() { AABB sceneAABB{uvector3(-1., -1.3, -1.6), uvector3(1.6, 1.6, 1.5)}; AABB subCell{ uvector3{0.076923076923076983, 0.17241379310344829, 0.77419354838709675}, uvector3{0.076923076923077094, 0.1724137931034484, 0.77419354838709686} }; tensor3 planeTensor(nullptr, 3), subPlaneTensor(nullptr, 3); algoim_spark_alloc(real, planeTensor, subPlaneTensor); xarrayInit(planeTensor); planeTensor.m(0) = -0.8; planeTensor.m(uvector3{0, 0, 1}) = 1; organizer::detail::powerTransformation(sceneAABB.size(), sceneAABB.min, planeTensor); organizer::detail::power2BernsteinTensor(planeTensor); bernstein::deCasteljau(planeTensor, subCell.min, subCell.max, subPlaneTensor); int sign = bernstein::uniformSign(subPlaneTensor); std::cout << sign << std::endl; ImplicitPolyQuadrature<3> ipquad(subPlaneTensor); real volume = 0; ipquad.integrate(AutoMixed, 10, [&](const uvector &x, real w) { if (evalBernstein(subPlaneTensor, x)) volume += w * 1; }); } void testBlob() { organizer::Blob blob = {5, 3, 4, 5, 6}; // std::cout << blob.isPrimitive << std::endl; // std::cout << blob.nodeOp << std::endl; // std::cout << blob.ignoreMod << std::endl; // std::cout << blob.isLeft << std::endl; // std::cout << blob.ancestor << std::endl; std::cout << sizeof(blob) << std::endl; std::cout << sizeof(int) << std::endl; } void testTensorInverse() { auto phiDesc = std::make_shared(uvector3(0.2, 0.3, 0.5), uvector3(0.8, 1.1, 0.9)); const int faceCnt = 6; std::vector tensors(faceCnt, tensor3(nullptr, 2)); std::vector *> sparkStackPtrs(faceCnt); tensor3 tensor(nullptr, 1 + faceCnt); algoimSparkAllocHeapVector(sparkStackPtrs, tensors); algoim_spark_alloc(real, tensor); VisiblePrimitiveRep visiblePrimitiveRep{tensors, AABB(), organizer::BlobTree()}; organizer::detail::compositePower(visiblePrimitiveRep.tensors, 0, 0, 1, tensor); makeMesh(*phiDesc, visiblePrimitiveRep); uvector3 testX(0.5, 0.7, 0.2); real evalX = evalPower(tensor, testX); std::cout << "before inverse, evalX = " << evalX << std::endl; inverseTensor(tensor); evalX = evalPower(tensor, testX); std::cout << "after inverse, evalX = " << evalX << std::endl; // free for (auto &ptr : sparkStackPtrs) delete ptr; } void testRotation() { auto desc = std::make_shared(SphereDesc(0.1, uvector3(0.1, 0.2, 0.1))); tensor3 power(nullptr, 3); algoim_spark_alloc(real, power); VisiblePrimitiveRep visiblePrimitiveRep{{power}, AABB{}, BlobTree()}; makeSphere(*desc, visiblePrimitiveRep); uvector3 testX(0.5, 0.7, 0.2); real evalX = evalPower(power, testX); std::cout << "before rotation, evalX = " << evalX << std::endl; // tensor3 rotatedPower(nullptr, sum(power.ext()) - 3 + 1); // algoim_spark_alloc(real, rotatedPower); // uvector3 axis = uvector3(4, 2, 3); // axis = axis / norm(axis); // organizer::detail::powerRotation(axis, util::pi / 2, power, rotatedPower); // evalX = evalPower(rotatedPower, testX); // std::cout << "after rotation, evalX = " << evalX << std::endl; // bool b = bernstein::autoReduction(rotatedPower, 1e4 * std::numeric_limits::epsilon()); // std::cout << "auto reduction = " << b << std::endl; // evalX = evalPower(rotatedPower, testX); // std::cout << "after reduction, evalX = " << evalX << std::endl; } void testPrimitive() { // casePolyhedron2(); // casePolyhedron3(); // casePolyhedronSphere(); // testSubDivideWithDeCasteljau(); // testBlob(); // caseScene(); testRotation(); // caseScene1(); // caseScene2(); // caseCone(); // testPlaneWithinSubcell(); // caseCubeSphere(); // caseTwoCube(); // testTensorInverse(); // testPlaneUniformSign(); }