You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

346 lines
11 KiB

9 months ago
#ifndef ALGOIM_XARRAY_HPP
#define ALGOIM_XARRAY_HPP
// algoim::xarray implements an N-dimensional array view of a memory
// block controlled by the user
#include <cassert>
#include "uvector.hpp"
#include "sparkstack.hpp"
#include "utility.hpp"
namespace algoim
{
// MiniLoop<N> is an optimised version of MultiLoop<N> with zero lowerbound
template<int N>
class MiniLoop
{
uvector<int,N> i;
int iexp;
const uvector<int,N> ext;
public:
explicit MiniLoop(const uvector<int,N>& ext) : ext(ext), i(0), iexp(0) {}
MiniLoop& operator++()
{
++iexp;
for (int dim = N - 1; dim >= 0; --dim)
{
if (++i(dim) < ext(dim))
return *this;
if (dim == 0)
return *this;
i(dim) = 0;
}
return *this;
}
const uvector<int,N>& operator()() const
{
return i;
}
int operator()(int index) const
{
return i(index);
}
bool operator~() const
{
return i(0) < ext(0);
}
int furl() const
{
return iexp;
}
uvector<int,N> shifted(int dim, int amount) const
{
uvector<int,N> j = i;
j(dim) += amount;
return j;
}
};
template<typename T>
struct xarraySlice
{
T* ptr;
int len;
xarraySlice(xarraySlice&) = delete;
xarraySlice(xarraySlice&&) = delete;
xarraySlice& operator= (const T& x) { for (int i = 0; i < len; ++i) ptr[i] = x; return *this; }
xarraySlice& operator+=(const T& x) { for (int i = 0; i < len; ++i) ptr[i] += x; return *this; }
xarraySlice& operator-=(const T& x) { for (int i = 0; i < len; ++i) ptr[i] -= x; return *this; }
xarraySlice& operator*=(const T& x) { for (int i = 0; i < len; ++i) ptr[i] *= x; return *this; }
xarraySlice& operator/=(const T& x) { for (int i = 0; i < len; ++i) ptr[i] /= x; return *this; }
xarraySlice& operator= (const xarraySlice& x) { for (int i = 0; i < len; ++i) ptr[i] = x.ptr[i]; return *this; }
xarraySlice& operator+=(const xarraySlice& x) { for (int i = 0; i < len; ++i) ptr[i] += x.ptr[i]; return *this; }
xarraySlice& operator-=(const xarraySlice& x) { for (int i = 0; i < len; ++i) ptr[i] -= x.ptr[i]; return *this; }
xarraySlice& operator*=(const xarraySlice& x) { for (int i = 0; i < len; ++i) ptr[i] *= x.ptr[i]; return *this; }
xarraySlice& operator/=(const xarraySlice& x) { for (int i = 0; i < len; ++i) ptr[i] /= x.ptr[i]; return *this; }
template<typename X, typename Y>
struct prod
{
const X& x;
const Y& y;
};
xarraySlice& operator= (const prod<xarraySlice,T>& op) { for (int i = 0; i < len; ++i) ptr[i] = op.x.ptr[i] * op.y; return *this; }
xarraySlice& operator+=(const prod<xarraySlice,T>& op) { for (int i = 0; i < len; ++i) ptr[i] += op.x.ptr[i] * op.y; return *this; }
xarraySlice& operator-=(const prod<xarraySlice,T>& op) { for (int i = 0; i < len; ++i) ptr[i] -= op.x.ptr[i] * op.y; return *this; }
xarraySlice& operator*=(const prod<xarraySlice,T>& op) { for (int i = 0; i < len; ++i) ptr[i] *= op.x.ptr[i] * op.y; return *this; }
xarraySlice& operator/=(const prod<xarraySlice,T>& op) { for (int i = 0; i < len; ++i) ptr[i] /= op.x.ptr[i] * op.y; return *this; }
};
template<typename T>
auto operator* (const xarraySlice<T>& x, const T& y)
{
return typename xarraySlice<T>::template prod<xarraySlice<T>,T>{x, y};
};
template<typename T>
void swap(const xarraySlice<T>& x, const xarraySlice<T>& y)
{
using std::swap;
for (int i = 0; i < x.len; ++i)
swap(x.ptr[i], y.ptr[i]);
}
// algoim::xarray implements an N-dimensional array view of a memory
// block controlled by the user
template<typename T, int N>
class xarray
{
T* data_;
uvector<int,N> ext_;
friend class SparkStack<T>;
public:
// interpret the given block of memory as an N-dimensional array of the given extent
xarray(T* data, const uvector<int,N>& ext) : data_(data), ext_(ext) {}
xarray(const xarray&) = delete;
xarray& operator=(const xarray& x)
{
assert(same_shape(x));
for (int i = 0; i < size(); ++i)
data_[i] = x.data_[i];
return *this;
}
template<typename S>
xarray& operator=(const S& x)
{
for (int i = 0; i < size(); ++i)
data_[i] = x;
return *this;
}
template<typename S>
xarray& operator+=(const S& x)
{
for (int i = 0; i < size(); ++i)
data_[i] += x;
return *this;
}
xarray& operator+=(const xarray& x)
{
assert(same_shape(x));
for (int i = 0; i < size(); ++i)
data_[i] += x.data_[i];
return *this;
}
template<typename S>
xarray& operator-=(const S& x)
{
for (int i = 0; i < size(); ++i)
data_[i] -= x;
return *this;
}
xarray& operator-=(const xarray& x)
{
assert(same_shape(x));
for (int i = 0; i < size(); ++i)
data_[i] -= x.data_[i];
return *this;
}
template<typename S>
xarray& operator*=(const S& x)
{
for (int i = 0; i < size(); ++i)
data_[i] *= x;
return *this;
}
const T* data() const { return data_; }
T* data() { return data_; }
// Accessors for user-expanded index, 0 <= i < prod(ext)
const T& operator[](int i) const { return data_[i]; }
T& operator[](int i) { return data_[i]; }
// Slice and flatten this(i,:)
template<int NN = N, std::enable_if_t<NN == 1, bool> = true>
T& a(int i)
{
return data_[i];
}
// Slice and flatten this(i,:)
template<int NN = N, std::enable_if_t<NN == 1, bool> = true>
const T& a(int i) const
{
return data_[i];
}
// Slice and flatten this(i,:)
template<int NN = N, std::enable_if_t<(NN > 1), bool> = true>
auto a(int i) const
{
int span = prod(ext_, 0);
return xarraySlice<T>{data_ + i * span, span};
}
const T& operator()(int i, int j) const
{
static_assert(N == 2, "N == 2 required for integer pair access");
return data_[i*ext(1) + j];
}
T& operator()(int i, int j)
{
static_assert(N == 2, "N == 2 required for integer pair access");
return data_[i*ext(1) + j];
}
// Accessors by multi-index
const T& m(const uvector<int,N>& i) const
{
return data_[util::furl(i, ext_)];
}
// Accessors by multi-index
T& m(const uvector<int,N>& i)
{
return data_[util::furl(i, ext_)];
}
// Accessors by mini-loop, where it is assumed the MiniLoop object's
// associated extent is identical to this xarray
const T& l(const MiniLoop<N>& i) const
{
return data_[i.furl()];
}
T& l(const MiniLoop<N>& i)
{
return data_[i.furl()];
}
const uvector<int,N>& ext() const
{
return ext_;
}
int ext(int i) const
{
return ext_(i);
}
int size() const
{
return prod(ext_);
}
MiniLoop<N> loop() const
{
return MiniLoop<N>(ext_);
}
// xarray is strided so that the inner-most dimension (dim 0) is the slowest varying;
// as such, one may view an N-dimensionl xarray as a length ext(0) vector of (N-1)-
// dimensional xarrays. Two views of this(i,:) are provided:
// - flatten() returns a 2D view, of dimensions ext(0) by ext(1) * ... * ext(N - 1)
// - slice(i) returns an (N-1)-D array of extent (ext(1), ..., ext(N-1))
auto flatten() const
{
return xarray<T,2>(data_, uvector<int,2>{ext_(0), prod(ext_, 0)});
}
// xarray is strided so that the inner-most dimension (dim 0) is the slowest varying;
// as such, one may view an N-dimensionl xarray as a length ext(0) vector of (N-1)-
// dimensional xarrays. Two views of this(i,:) are provided:
// - flatten() returns a 2D view, of dimensions ext(0) by ext(1) * ... * ext(N - 1)
// - slice(i) returns an (N-1)-D array of extent (ext(1), ..., ext(N-1))
auto slice(int i) const
{
return xarray<T,N-1>(data_ + i * prod(ext_, 0), remove_component(ext_, 0));
}
bool same_shape(const xarray& x) const
{
return all(x.ext_ == ext_);
}
T maxNorm() const
{
assert(size() > 0);
using std::abs;
using std::max;
T m = abs(data_[0]);
for (int i = 1; i < size(); ++i)
m = max(m, abs(data_[i]));
return m;
}
T min() const
{
assert(size() > 0);
using std::min;
T m = data_[0];
for (int i = 1; i < size(); ++i)
m = min(m, data_[i]);
return m;
}
T max() const
{
assert(size() > 0);
using std::max;
T m = data_[0];
for (int i = 1; i < size(); ++i)
m = max(m, data_[i]);
return m;
}
// Alter the extent of the view of the existing memory block; usually this
// only makes sense when the new extent is smaller than the existing extent,
// i.e., prod(new extent) <= prod(old extent)
void alterExtent(const uvector<int,N>& ext)
{
ext_ = ext;
}
// flatten() and slice() return temporary objects which cannot be bound to non-const references;
// applying .ref() to the temporary object allows this to be done and is an assertion by the
// user that doing so is safe (relating to the output of flatten() or slice() being destroyed
// at the end of the full-expression)
xarray<T,N>& ref()
{
return *this;
}
};
} // namespace algoim
#endif